
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Imagine Replay
Date: 14 Aug, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Imagine
Replay

Approved By Oleksii Zaiats | SC Audits Head at Hacken OU
Arda Usman | Lead Solidity SC Auditor at Hacken OU

Tags ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website Not provided

Changelog
25.07.2023 – Initial Review
07.08.2023 - Second Review
11.08.2023 - Third Review
14.08.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 5
Checked Items 7
Findings 10

Critical 10
High 10
Medium 10

M01. Missing Event for Critical Value Updation 10
Low 10

L01. Redundant Use of SafeMath 10
L02. Missing Zero Address Validation 11
L03. State Variables Can Be Declared Immutable or Constant 11
L04. Public Variable Read in the External Context 11
L05. Copy Of Well-Known Contract 12

Informational 12
I01. Missing Event Indexes 12
I02. Disabled Solidity Optimizer 12
I03. Optimization by Replacing the require() Statements
with Custom Errors 13
I04. Redundant Check 13
I05. Outdated Solidity Version 13
I06. Events Are Missing Relevant Data 13
I07. Code Duplication 14
I08. Optimization by Replacing the Previous State Values of the Roles with
the Values that Are Stored in the Memory 14

Disclaimers 15
Appendix 1. Severity Definitions 16

Risk Levels 16
Impact Levels 17
Likelihood Levels 17
Informational 17

Appendix 2. Scope 18

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Imagine Replay (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

ReplayToken is an ERC20 reward contract with the following contracts:
● ReplayToken — simple ERC-20 token that mints initial supply to

a passed initDistrWallet_ address and allows to mint new tokens
to reward the Subchain validator stakers.

Privileged roles
● PendingAdmin is an Intermediary role that is used for the update of

admin.
● Admin is an address that is allowed to mint new tokens, change the

pendingAdmin and change the value of rewards that will be shared
between stakers.

● Minter roles is an address that is allowed to mint new staker
rewards.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional and technical requirements are provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment and deployment instructions are
sufficient.

Test coverage
Code coverage of the project is 80.56% (branch coverage)

● The audit Lines of Code do not exceed 250, this does not affect the
score.

Security score
As a result of the audit, the code contains 3 low severity issues.
The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10 The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

25 July 2023 5 1 0 0

07 August 2023 5 1 0 0

11 August 2023 3 0 0 0

14 August 2023 3 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The out-of-scope ValidatorStakeManager contract and admin are
responsible for the minting of tokens. The secureness of the supply
depends on the secureness of key storage. If an admin or a minter
goes malicious, they will be able to mint all the token supply at
once and prevent other users from receiving rewards.

● The total supply of the token is determined during the deployment.
It cannot be verified until the contract is deployed.

● There is no strict restriction on when the admin can change the
_stakerRewardPerBlock variable. They might set a smaller reward per
block by calling the updateStakerRewardPerBlock() function. As a
result, the stakers might receive fewer or no rewards, contrary to
what they initially expected. It is recommended to use a timelock
mechanism for such critical functionality.

● Since ReplayToken will be used as the Governance token, a malicious
admin or minter will be able to manipulate the voting power.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Failed I05

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Not

Relevant

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Failed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Not
Relevant

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.
Medium

M01. Missing Event for Critical Value Updation

Impact Medium

Likelihood Medium

setPendingAdmin() does not have events.
Events for critical state changes should be emitted for tracking
things off-chain.

This can lead to non-tracking minting tokens and setting a pending
admin off-chain.

Paths: ./contracts/ReplayToken.sol: setPendingAdmin()

Recommendation: Add Emitting Events to setPendingAdmin()

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Fixed (Revised commit:
0755d4bfb100169b3c1ab4353e9592d6e06a1530)

Low

L01. Redundant Use of SafeMath

Impact Low

Likelihood Low

The library SafeMath is generally not needed starting with Solidity
0.8, since the compiler now has built-in overflow checking.

It would lead to not checking for under/overflow at all.

Path: ./contracts/ReplayToken.sol: mintStakerReward(), mint(),

Recommendation: Remove the SafeMath library.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

www.hacken.io
10



L02. Missing Zero Address Validation

Impact Low

Likelihood Low

updateMinter(), setPendingAdmin() functions do not have require()
check for zero address validation.

This can lead to incorrect added address.

Paths: ./contracts/ReplayToken.sol: updateMinter(), setPendingAdmin()

Recommendation: Add require state (minter_ != address(0), “Error
message”) in updateMinter() function.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Fixed (Revised commit:
0755d4bfb100169b3c1ab4353e9592d6e06a1530)

L03. State Variables Can Be Declared Immutable or Constant

Impact Low

Likelihood Low

Compared to regular state variables, the Gas costs of constant and
immutable variables are much lower. Immutable variables are evaluated
once at construction time and their value is copied to all the places
in the code where they are accessed in the ReplayToken contract,
variables: _decimals, maxSupply.

Paths: ./contracts/ReplayToken.sol

Recommendation: Declare mentioned variables as immutable.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Fixed (Revised commit:
0755d4bfb100169b3c1ab4353e9592d6e06a1530)

L04. Public Variable Read in the External Context

Impact Low

Likelihood Low

The contract reads its own variable using this. keyword and
totalSupply(), adding overhead of an unnecessary STATICCALL.

Path: ./contracts/ReplayToken.sol: mintStakerReward()

www.hacken.io
11



Recommendation: Read the variable directly from storage instead of
calling the contract.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

L05. Copy Of Well-Known Contract

Impact Low

Likelihood Low

Well-known contracts from projects like provider should be imported
directly from the source as the projects are in development and may
update the contracts in the future.

Path: ./contracts/ReplayToken.sol

Recommendation: Import the Ownable2Step directly from the source,
avoid modifying them.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

Informational

I01. Missing Event Indexes

The lack of indexed events makes it difficult for users to track the
smart contract’s activity and increases overall Gas.

Path: ./contracts/ReplayToken.sol: UpdateAdmin, UpdateMinter

Recommendation: Use indexed events to keep track of a smart
contract's activity after it is deployed, which is helpful in
reducing overall Gas.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Fixed (Revised commit:
0755d4bfb100169b3c1ab4353e9592d6e06a1530)

I02. Disabled Solidity Optimizer

Disabled Solidity optimizer increases the overall Gas cost.

Path: ./contracts/ReplayToken.sol: truffle-config.js

Recommendation: Enable the Solidity compiler optimizer to minimize
the size of the code and the cost of execution via inline operations,
deployment costs, and function call costs.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33
www.hacken.io

12

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol#L19
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol#L19


Status: Fixed (Revised commit:
0755d4bfb100169b3c1ab4353e9592d6e06a1530)

I03. Optimization by Replacing the require() Statements with Custom
Errors

Path: ./contracts/ReplayToken.sol: constructor(), mint(),
adminOnly(), pendingAdminOnly(), minterOnly(), setPendingAdmin(),
updateMinter()

Recommendation: Replace the require() statements with custom errors.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

I04. Redundant Check

The mintStakerReward() function has the following redundant if, which
consumes additional Gas.
if (currentSupply >= maxSupply) {

return false;
}

Path: ./contracts/ReplayToken.sol: mintStakerReward()

Recommendation: Delete the redundant if check.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

I05. Outdated Solidity Version

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version. Using an old version for deployment prevents access to new
Solidity security checks.

Path: ./contracts/ReplayToken.sol
Recommendation: Deploy with any of the following Solidity versions:
0.8.18, 0.8.19, 0.8.20

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

I06. Events Are Missing Relevant Data

In the ReplayToken contract, the UpdateAdmin and UpdateMinter events
do not log the previous state of the updated data. This may impede
reconstructing the history of generation updates for an account
through emitted events.

www.hacken.io
13



Path: ./contracts/ReplayToken.sol

Recommendation: Consider adding the previous values to the
UpdateAdmin and UpdateMinter events.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Fixed (Revised commit:
0755d4bfb100169b3c1ab4353e9592d6e06a1530)

I07. Code Duplication

The code in the functions mint() and mintStakerReward() does the
same, thus it is considered duplicated, can be refactored and merged.

Path: ./contracts/ReplayToken.sol: mint(), mintStakerReward()

Recommendation: Consider reducing the duplicated code to save Gas.

Found in: d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Status: Reported

I08. Optimization by Replacing the Previous State Values of the Roles
with the Values that Are Stored in the Memory

The contract ReplayToken uses 3 new variables for on-chain tracking
of previous values of the updated roles: minter, admin, and
pendingAdmin. They are stored in storage, so they require additional
Gas for that.

Path: ./contracts/ReplayToken.sol: previousMinter,
previousPendingAdmin, previousAdmin

Recommendation: Consider using memory instead of storage for previous
values of the updated roles.

Found in: 0755d4bfb100169b3c1ab4353e9592d6e06a1530

Status: New

www.hacken.io
14



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
16



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
17



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/imaginereplay/smart-contracts/tree/pre-audit

Commit d266c1b9c7c6db414a50406582e5d5fee1fe3c33

Whitepaper Not provided

Requirements Not provided

Technical
Requirements NatSpec

Contracts File: contracts/ReplayToken.sol
SHA3: 442b14dd3b113fcbeccb3e1926e398a150a243df89e481951252c34815698673

Second review scope

Repository https://github.com/imaginereplay/smart-contracts/tree/pre-audit

Commit 2e6d59c1dc54d2f6caf00daafdf08cd7deba66ce

Whitepaper Not provided

Requirements Not provided

Technical
Requirements NatSpec

Contracts File: contracts/ReplayToken.sol
SHA3: b164e8daf4b2e73583540883b593369dabd87ecd25c57c47851f1f0029d71fc9

Third review scope

Repository https://github.com/imaginereplay/smart-contracts/tree/pre-audit

Commit 8d3486b60d5700c3249d3e15a909cbab4531c3ca

Whitepaper Not provided

Requirements Not provided

Technical
Requirements NatSpec

Contracts File: contracts/ReplayToken.sol
SHA3: 62c338f678bc6be3eb7ba2b8404d779a58a578af376c64ad3ece8901deb9ddd0

www.hacken.io
18

https://github.com/imaginereplay/smart-contracts/tree/pre-audit
https://github.com/imaginereplay/smart-contracts/tree/pre-audit
https://github.com/imaginereplay/smart-contracts/tree/pre-audit
https://github.com/imaginereplay/smart-contracts/tree/pre-audit
https://github.com/imaginereplay/smart-contracts/tree/pre-audit
https://github.com/imaginereplay/smart-contracts/tree/pre-audit


Fourth review scope

Repository https://github.com/imaginereplay/smart-contracts/tree/pre-audit

Commit 0755d4bfb100169b3c1ab4353e9592d6e06a1530

Whitepaper Not provided

Requirements Not provided

Technical
Requirements NatSpec

Contracts File: contracts/ReplayToken.sol
SHA3: ac999ae51fd2a90df5d16a458fe02a8d618c1ed5c062a606ed072b220c9b9cd3

www.hacken.io
19

https://github.com/imaginereplay/smart-contracts/tree/pre-audit
https://github.com/imaginereplay/smart-contracts/tree/pre-audit

