
PARALLELCHAIN
SECURITY ASSESSMENT



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 2 of 32

Intro

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well as

information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another party. Any subsequent publication of this report shall be without

mandatory consent.

Name ParallelChain Full Node

Website https://parallelchain.io/

Repository https://github.com/parallelchain-io/fullnode

Commits 50e04772508f3212744976f33b1c42d3a18c75ba

Repository https://github.com/parallelchain-io/pchain-world-state

Commits 28f683405a988dd5321da7c4955591b106500e1e

Repository https://github.com/parallelchain-io/pchain-runtime

Commits 9f3209144743b889b8723889252ffb4afd53bf4b

Repository https://github.com/parallelchain-io/pchain-types-rust

Commits 1dc39d5d942156a2e468bcb09dcf1afe41c0a11f

Repository https://github.com/parallelchain-io/pchain-network

Commits 90367aa1cd08824197cdf8f7d1d34a9c80661ac4

Platform L1

Network Parallel Chain

Languages Rust

Methodology Blockchain Protocol and Security Analysis Methodology

Lead Auditor s.akermoun@hacken.io

Auditor n.lipartiia@hacken.io

Approver l.ciattaglia@hacken.io

Timeline 12.06.2023 - 21.08.2023

Changelog 22.08.2023 (Preliminary Report)

Changelog 18.09.2023 (Final Report)

https://parallelchain.io/
https://github.com/parallelchain-io/fullnode
https://github.com/parallelchain-io/fullnode/commit/50e04772508f3212744976f33b1c42d3a18c75ba
https://github.com/parallelchain-io/pchain-world-state
https://github.com/parallelchain-io/pchain-world-state/commit/28f683405a988dd5321da7c4955591b106500e1e
https://github.com/parallelchain-io/pchain-runtime
https://github.com/parallelchain-io/pchain-runtime/commit/9f3209144743b889b8723889252ffb4afd53bf4b
https://github.com/parallelchain-io/pchain-types-rust
https://github.com/parallelchain-io/pchain-types-rust/commit/1dc39d5d942156a2e468bcb09dcf1afe41c0a11f
https://github.com/parallelchain-io/pchain-network
https://github.com/parallelchain-io/pchain-network/commit/90367aa1cd08824197cdf8f7d1d34a9c80661ac4
https://hackenio.cc/blockchain_methodology
mailto:s.akermoun@hacken.io
mailto:n.lipartiia@hacken.io
mailto:l.ciattaglia@hacken.io


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 3 of 32

Table of contents

Summary
Documentation quality

Code quality

Architecture quality

Security score

Total score

Findings count and definitions

Scope of the audit
Protocol Audit

Implementation

Protocol Tests

Issues
Arithmetic Overflow Due to High Priority Fee

DoS Risk from Vulnerable Dependency

Unchecked Broadcasted Transactions

Execution of Unauthorized Command in Epoch Transactions

Runtime Panic Due to Untimely NextEpoch  Transaction

Private Key Stored Unencrypted

Misaligned Pointer Dereference in Wasmer-VM Crate

Non-Epoch Commands in Epoch Transaction

Potential Panic Due to Unsafe Balance Management

Unrestricted SetPoolSettings  Transactions Despite Whitelist Configuration

Unsoundness Issue in Borsh Dependency

Compilation error due to dependency hotstuff_rs

Correct transactions can be dropped

Global Mutable Static Variable within Unsafe Block in rpc::state::view  Function

Inconsistent Code Formatting

Linter Warnings

RPC submit_transaction Inadequate Logging Detail

std::panic::catch_unwind() usage

Test coverage

Unsafe arithmetics

Disclaimers
Hacken disclaimer

Technical disclaimer



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 4 of 32

Summary

ParallelChain Lab is a leading tech company known for its innovative layer-1 blockchain protocol, ParallelChain. This versatile public and

private blockchain infrastructure supports high-performance, enterprise-grade applications and provides a secure and streamlined
environment for both traditional enterprises and the burgeoning DeFi community. The latest offering from ParallelChain Lab is

ParallelChain Mainnet, a public smart contract platform powered by a proof-of-stake consensus mechanism, ParallelBFT.

Central to ParallelChain's appeal is its robust SDK that offers developers a powerful platform to create their own applications, including

smart contracts, using the Rust programming language. The choice of Rust reflects the company's commitment to leveraging cutting-edge
technologies, offering a balance of performance, safety, and sophistication. Applications and smart contracts developed using

ParallelChain's SDK are compiled to WebAssembly (Wasm), a binary instruction format that ensures seamless execution, flexibility, and
security.

The focus of this report will be a comprehensive analysis of the ParallelChain full node, including its associated modules and crates,
runtime, network, world state, and custom types and data structures. This evaluation aims to provide insight into the project's quality,

security, and potential.

Documentation quality

ParallelChain offers a complete set of documentation that spans across various components of the system, such as the network, runtime,
worldstate, and pchain-types. These associated crates and modules are well-documented, providing developers with a clear

understanding of the inner mechanisms and functionalities.

The documentation of the node, in comparison to other components, is slightly less comprehensive but remains at a good level. This slight

disparity doesn't diminish the overall quality, but additional focus on detailing the node's documentation would harmonize it with the
extensive documentation found in the associated components.

Moreover, developers and reviewers can benefit from the external documentation available in the repository ParallelChain Protocol. This
outside resource further describes the protocol and its inner workings, acting as a valuable guide to those working with the ParallelChain

system.

The total Documentation Quality score is 8 out of 10.

Code quality

ParallelChain's code quality is commendable, displaying a strong adherence to Rust's best practices. This commitment to excellence is

demonstrated by the minimal presence of linter warnings, reflecting the codebase's alignment with well-established programming
standards.

The project exhibits an impressive test coverage that speaks to its robustness.

The development team has acknowledged the concern regarding the use of catch_unwind as a substitute for traditional try/catch error

handling, particularly referencing issue PCN-018. They have concurred on the importance of reducing reliance on this mechanism and
have expressed their commitment to exploring alternative means for detecting unforeseen exceptions, including the implementation of

fuzz tests.

The development team has indeed acknowledged the issue concerning unsafe arithmetic operations. They have approached this matter

with thorough consideration and attention to detail, recognizing the inherent risk of arithmetic overflows. While the team has justified that
certain instances of unsafe arithmetic usage are not susceptible to overflows, they have also taken proactive steps to address other

potential concerns. Specifically, they have successfully resolved a critical issue by introducing a comprehensive error-handling mechanism
in conjunction with the utilization of checked_* arithmetic operations. This prudent action enhances the overall safety and reliability of the

codebase.

http://localhost:45697/issues/%5BPCN-018%5D%5BInformational%5Dcatch_unwind_usage.md
http://localhost:45697/issues/%5BPCN-008%5D%5BCritical%5Dhigh_priority_fee_causes_overflow.md


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 5 of 32

The attention to code quality is evident, and the existing areas for improvement are resolvable. By addressing these identified concerns,

ParallelChain can further bolster the reliability and safety of its codebase.

The total Code Quality score is 8 out of 10.

Architecture quality

The architecture of ParallelChain's full node is both elegant and efficient, reflecting a simplicity that is a strong asset rather than a

limitation. By adopting a previously audited BFT consensus mechanism that is an implementation of the HotStuff consensus protocol, the
design attains a blend of robustness and efficiency.

The utilization of wasmer runtime for WebAssembly (Wasm) execution offers modern and versatile execution capabilities. Simultaneously,
it supports the streamlined architecture, providing flexibility and performance benefits for smart contract execution.

Furthermore, the network stack within ParallelChain is well-defined and thoughtfully structured. This clear design leads to a robust peer-to-
peer network, facilitating efficient communication between nodes without unnecessary complexity.

One area of concern that merits attention is the synchronization of nonces, particularly in the handling of transactions within the mempool.
An observed behavior where transactions sent in quick succession are dropped due to a Nonce inaccessible  error reveals a complexity

in the nonce handling logic. This situation doesn't pose an immediate security risk but is considered a design flaw that requires careful

consideration to maintain system robustness and integrity.The development team has acknowledged this flaw and has outlined their
intention to incorporate a new mempool design in a future protocol version, addressing this concern comprehensively.

This balance of simplicity and sophistication in the architecture contributes to the system's stability, scalability, and ease of understanding.
It's an exemplary demonstration of how effective design doesn't have to be overly complex but can achieve its goals through clarity and

precision.

The architecture quality score is 8 out of 10.

Security score

In our analysis of the Parallelchain fullnode and its components, as defined within the scope of this audit, we have uncovered multiple

security issues that required immediate attention. These comprise two critical, one high, two medium, and seven low severity concerns.
Nevertheless, the development team has responded proactively and effectively to rectify these issues.

Critical issue PCN-001 which identified the potential for a Denial of Service (DoS) attack stemming from the utilization of an outdated
version of the libp2p  library, has been promptly addressed.

Furthermore, the critical issue PCN-008, pinpointing a vulnerability where submitting a transaction with a high-priority fee could trigger a

runtime panic, has been successfully rectified by the team through the implementation of error handling mechanisms employing safe
arithmetic operations.

The development team has also demonstrated diligence in providing the requisite checks and mechanisms to resolve issue PCN-020,
which highlighted the absence of adequate validation measures for transactions received through the broadcast mechanism.

Medium severity issue PCN-013, revealing a potential avenue for authorized users to induce a runtime panic by submitting a transaction
with the NextEpoch  command, has likewise been effectively addressed by the development team.

Medium severity issue PCN-016 received prompt and effective correction, mitigating the possibility of a malicious node executing

whitelisted commands that should not be accepted from this signer.

Low issue PCN-009 was resolved, which eliminated the risk of runtime panics related to unsafe arithmetic during balance management.

Low issue PCN-012 has been effectively managed, ensuring that vulnerable dependencies are updated, thereby reducing potential risks.

Low issue PCN-014 underwent correction, removing the previously identified typo that compromised the effectiveness of whitelisting the

SetPoolSettings  command.

http://localhost:45697/issues/%5BPCN-001%5D%5BCritical%5Ddos_from_vulnerable_dependency.md
http://localhost:45697/issues/%5BPCN-008%5D%5BCritical%5Dhigh_priority_fee_causes_overflow.md
http://localhost:45697/issues/%5BPCN-020%5D%5BHigh%5Dbroadcasted_transactions_are_unchecked.md
http://localhost:45697/issues/%5BPCN-013%5D%5BMedium%5Duntimely_next_epoch_tx.md
http://localhost:45697/issues/%5BPCN-016%5D%5BMedium%5Dunauthorized_command_in_epoch_transactions.md
http://localhost:45697/issues/%5BPCN-009%5D%5BLow%5Doverflows_due_balance_management.md
http://localhost:45697/issues/%5BPCN-012%5D%5BLow%5Dunsound_borsh_dependency.md
http://localhost:45697/issues/%5BPCN-014%5D%5BLow%5Dwhitelisting_set_pool_settings.md


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 6 of 32

Low issue PCN-015 has received attention and resolution, preventing the possibility of a malicious validator circumventing the initiation of

the next epoch, thus preserving the integrity of the epoch transition process.

Low issue PCN-017 has been addressed effectively, rectifying the vulnerability associated with the unencrypted storage of private keys

and mitigating the potential security risk.

Low issue PCN-019 has been duly recognized, drawing attention to a vulnerability that has the potential to impact specific Apple devices

operating on the ARM64 architecture. This vulnerability may result in node crashes in the event of Wasmer VM errors. Notably, it has been
acknowledged that the preferred environment for running nodes is on Linux. As part of the resolution process, the documentation has

been revised to provide users with updated information regarding the recommended hardware requirements.

The security score is 10 out of 10.

Total score

Considering all metrics, the total score of the report is 9.4 out of 10.

Findings count and definitions

Severity Findings Severity Definition

Critical 2

Vulnerabilities that can lead to a complete breakdown of the blockchain

network's security, privacy, integrity, or availability fall under this category.
They can disrupt the consensus mechanism, enabling a malicious entity to

take control of the majority of nodes or facilitate 51% attacks. In addition,
issues that could lead to widespread crashing of nodes, leading to a

complete breakdown or significant halt of the network, are also considered
critical along with issues that can lead to a massive theft of assets.

Immediate attention and mitigation are required.

High 1

High severity vulnerabilities are those that do not immediately risk the

complete security or integrity of the network but can cause substantial
harm. These are issues that could cause the crashing of several nodes,

leading to temporary disruption of the network, or could manipulate the
consensus mechanism to a certain extent, but not enough to execute a

51% attack. Partial breaches of privacy, unauthorized but limited access to
sensitive information, and affecting the reliable execution of smart

contracts also fall under this category.

Medium 2

Medium severity vulnerabilities could negatively affect the blockchain

protocol but are usually not capable of causing catastrophic damage.
These could include vulnerabilities that allow minor breaches of user

privacy, can slow down transaction processing, or can lead to relatively
small financial losses. It may be possible to exploit these vulnerabilities

under specific circumstances, or they may require a high level of access to
exploit effectively.

Low 6 Low severity vulnerabilities are minor flaws in the blockchain protocol that

might not have a direct impact on security but could cause minor
inefficiencies in transaction processing or slight delays in block

propagation. They might include vulnerabilities that allow attackers to

http://localhost:45697/issues/%5BPCN-015%5D%5BLow%5Dnon_epoch_command_in_epoch_block.md
http://localhost:45697/issues/%5BPCN-017%5D%5BLow%5Dunencrypted_node_key.md
http://localhost:45697/issues/%5BPCN-019%5D%5BLow%5Dwasmer_vm_errors_crash_node.md


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 7 of 32

cause nuisance-level disruptions or are only exploitable under extremely

rare and specific conditions. These vulnerabilities should be corrected but
do not represent an immediate threat to the system.

Total 11



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 8 of 32

Scope of the audit

Protocol Audit

Cryptography and Keys

Cryptography Libraries

Keys Generation

Keystore storage

Asymmetric (Signing and Verification)

Cryptographic attacks analysis (Analytic Attack, Implementation Attack, Statistical Attack, ...)

Accounts

Accounts implementation review

Wallet implementation review

Security vectors analysis (data availability, nonce,..)

Chain

Tx implementation review (defaults, timestamps, assembly)

Bootstrap review (genesis, seed peers)

Mempool review (defaults, timestamps)

Standard attacks review (replay, malleability,...)

Consensus

ParallelChain Hotstuff integration review

VM

VM implementation review

Known VM Vulnerabilities review

Attack scenarios analysis (Gas, race, stack, DoS, state implosion...)

P2P

P2P implementation review

Attack scenarios analysis (defaults, DoS, MiM, overflows, state machine)

RPC

RPC implementation review

Attack scenarios analysis (defaults, DoS, overflows, ..)

Storage

ParallelChain Worldstate integration review



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 9 of 32

Implementation

Code Quality

Static Code Analysis

Tests coverage

Protocol Tests

Node Tests

Environment Setup

E2E sync tests

Consensus tests

E2E transaction tests

Fuzz Tests

Chain fuzz tests

VM fuzz tests

Serialization tests



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 10 of 32

Issues

Arithmetic Overflow Due to High Priority Fee

The runtime encounters an arithmetic overflow when a transaction with a high priority_fee_per_gas  is processed, leading to a panic.

ID PCN-008

Scope Mempool/Runtime

Severity CRITICAL

Vulnerability Type Integer overflow

Status Fixed (b6d86f6)

Description

During the thorough code audit, a line of code in the pre-charge phase of the runtime has raised concerns:

pchain-runtime/src/execution/phase.rs:48:

if (gas_limit * (base_fee + priority_fee)) > origin_balance 

The variable priority_fee_per_gas  lacks bounds, making it susceptible to the creation and submission of a transaction where the sum

of the base fee and priority fee exceeds the maximum value of u64::MAX . This triggers an arithmetic overflow, leading to a panic. This

would cause a panic due to the overflow, which would be caught using catch_unwind  in the fullnode.

It's important to acknowledge that if the node was compiled with

[profile.release]  

panic = "abort" 

the panic will result in an immediate crash of the node.

Furthermore, it's noteworthy that the transaction does not get included in the blockchain, not even as a failed transaction. Additionally, the
sender's account does not incur any fee for this transaction.

Proof of Concept

To cause a single overflow in runtime, an attacker can submit a transaction with correct data (including commands, nonce, and base fee)

and set priority_fee_per_gas  to u64::MAX :

{ 
  "commands": [ 

    { 
      "Transfer": { 

        "recipient": "NBbktZ2Ed0GHDH0jCbtYzD4ICbZ7USv_bT0z-27yHjc", 

        "amount": 1 
      } 

    } 
  ], 

  "nonce": 0, 
  "gas_limit": 500000, 

  "max_base_fee_per_gas": 10, 

https://github.com/parallelchain-io/pchain-runtime/commit/b6d86f6d8043e770a9c5c232355e203a02f31ed2


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 11 of 32

  "priority_fee_per_gas": 18446744073709551615 

} 

This transaction will not be included in the blockchain. However, if you run the blockchain locally and check logs from mempool, you can

observe that the transaction is included there. Yet, when execute_from_mempool  is called, it logs something like this:

thread '<unnamed>' panicked at 'attempt to add with overflow', /Users/nino/.cargo/git/checkouts/pchain-runtime-c0b1e9872

Recommendation

Addressing potential overflow scenarios in a thoughtful manner is of utmost importance. It is advised to utilize the secure arithmetic

computation methods provided by the Rust Standard Library.

Transactions that trigger overflows should be meticulously recorded on the blockchain, marked with a "failed" status, and the

corresponding fee should be charged accordingly.

To bolster the application's security and stability, it is vital to substitute risky arithmetic operations with reliable alternatives. This proactive

approach will greatly enhance the overall resilience of the system.

DoS Risk from Vulnerable Dependency

The node utilizes an outdated version of the libp2p  library, which introduces a vulnerability that can lead to Denial-of-Service (DoS)

attacks.

ID PCN-001

Scope Dependencies

Severity CRITICAL

Vulnerability Type Denial-of-Service (DoS)

Status Fixed (5b0b2c3)

Description

The current implementation of the peer-to-peer networking module relies on libp2p  version 0.43.0 , which has been identified as

vulnerable due to its lack of resource management, as detailed in this advisory and in libp2p's Github issue page. The vulnerability allows
any remote peer to exploit resource exhaustion, potentially causing a victim node to run out of memory. This vulnerability is of critical

severity, as executing the attack requires no special privileges or user interaction, and is not mitigated by fee and gas mechanisms since it
operates at the network level, below the application layer. This allows for potential disruption across the entire blockchain network, thereby

significantly amplifying the impact of the exploit.

Furthermore, it's important to note that earlier versions of libp2p  utilize owning_ref , which itself has unresolved soundness issues.

These issues have not been addressed in the affected versions. Subsequent versions of libp2p  have removed the usage of

owning_ref  to mitigate the associated security concerns.

Proof of Concept

Several methods can be employed to carry out the attack. One option is for a malicious node to open new streams on a single connection
using a stream multiplexer. However, this attack can be mitigated by setting strict per-connection stream and connection limits.

Another option involves sending partial payloads on various protocol levels, forcing the victim node to buffer the partial payloads for a
period of time. The attacker can also trick the victim into pre-allocating buffers for messages that are never sent, consuming additional

resources.

https://github.com/parallelchain-io/pchain-network/commit/5b0b2c39234652638efef077ca280a1fcc896e97
https://rustsec.org/advisories/RUSTSEC-2022-0084
https://github.com/libp2p/rust-libp2p/security/advisories/GHSA-jvgw-gccv-q5p8
https://rustsec.org/advisories/RUSTSEC-2022-0040


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 12 of 32

These attacks cause the victim node to allocate numerous small memory chunks, which can ultimately lead to the victim's process running

out of memory and being terminated by the operating system. When executed continuously, this type of attack can result in a denial of
service, particularly when targeting multiple nodes within a libp2p  based network.

Recommendation

To address these concerns and maintain a secure codebase, as recommended by libp2p  developers, we strongly recommend to update

the dependency of pchain_network  to utilize the latest version of libp2p . The issue with resource management has been fixed since

version 0.45.1 . However, it is advisable to use the most recent version available, as it also eliminates the security issues generated by

the usage of owning_ref . By updating to the latest version, you ensure that your codebase benefits from the most recent bug fixes,

improvements, and security enhancements.

To avoid using vulnerable or unmaintained dependencies, incorporate the usage of cargo audit  into your development workflow. This

tool checks for any new vulnerabilities or outdated packages in your project's dependencies. Performing regular checks using cargo

audit  helps you stay updated on potential security issues and enables you to address them promptly.

Additionally, we recommend following best practices by consulting the DoS Mitigation page. This resource provides valuable information
on how to incorporate effective mitigation strategies, monitor your application's behavior, and respond to potential attacks.

By updating the libp2p  dependency, regularly auditing your dependencies with cargo audit , and following the best practices outlined

in the DoS Mitigation page, you take proactive measures to strengthen the security of your codebase and protect your network from
potential vulnerabilities and attacks.

Unchecked Broadcasted Transactions

Broadcasted transactions are unchecked upon reception, potentially allowing a Byzantine node to cause denial of service and network

congestion.

ID PCN-020

Scope Transactions

Severity HIGH

Vulnerability Type Data Validation

Status Fixed (f3caf2d)

Description

When transactions are broadcasted within the network, no validation checks are performed at reception. However, when transactions are
sent from an external account through the RPC API, several checks are conducted before adding them to the mempool and broadcasting

them. 
The submit_transaction  function, executes a series of tests to ensure that transactions meet certain criteria before being accepted.

Here is the function in question: 

src/rpc/transaction.rs:27:

pub(crate) async fn submit_transaction( 

    request: SubmitTransactionRequest, 
    tx_size: usize, 

    sync_mempool: SyncMempool<NonceStore>, 
) -> SubmitTransactionResponse { 

    let tx = request.transaction; 
    // Ensure the transaction has a minimum gas limit higher than the minimum cost for the transaction. 

    if tx.gas_limit < pchain_runtime::gas::tx_inclusion_cost(tx_size, tx.commands.len()) { 
        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 

    } 

    // Ensure the transaction doesn't exceed the current block gas limit. 

https://docs.libp2p.io/concepts/security/dos-mitigation/
https://github.com/parallelchain-io/fullnode/commit/f3caf2d2c4e744446a2db0442ce61dfea35cf790


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 13 of 32

    if tx.gas_limit > BLOCK_GAS_LIMIT as u64{ 

        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 
    } 

    // Ensure the transaction base fee is greater than or equal to the minimum 
    if tx.max_base_fee_per_gas < MIN_BASE_FEE{ 

        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 
    } 

    // Ensure the transaction size is smaller than the block size limit 
    if tx_size > BLOCK_SIZE_LIMIT { 

        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 
    } 

    // Ensure the transaction can be converted from pchain_types::blockchain::Transaction 

    // to pchain_types::blockchain::Transaction 
    if tx.is_cryptographically_correct().is_err(){ 

        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 
    } 

    // Return error if mempool is full or wrong nonce is provided 
    if let Err(error) = sync_mempool.insert(tx) { 

        return SubmitTransactionResponse { 
            error: Some(match error { 

                InsertTxError::NonceTooLow => SubmitTransactionError::UnacceptableNonce, 
                InsertTxError::MempoolFull => SubmitTransactionError::MempoolFull, 

            }), 

        }; 
    } 

    SubmitTransactionResponse { error: None } 
} 

The cryptographic correctness of a transaction is verified within another function, is_cryptographically_correct , defined in the

pchain-types  crate: 

src/blockchain.rs:145:

/// Check whether the Transaction's: 

/// 1. Signer is a valid Ed25519 public key. 
/// 2. Signature is a valid Ed25519 signature. 

/// 3. Signature is produced by the signer over the intermediate transaction. 
/// 4. Hash is the SHA256 hash over the signature. 

pub fn is_cryptographically_correct(&self) -> Result<(), CryptographicallyIncorrectTransactionError> {  

    // 1. 
    let public_key = PublicKey::from_bytes(&self.signer) 

        .map_err(|_| CryptographicallyIncorrectTransactionError::InvalidSigner)?; 
    // 2. 

    let signature = ed25519_dalek::Signature::from_bytes(&self.signature) 
        .map_err(|_| CryptographicallyIncorrectTransactionError::InvalidSignature)?; 

    // 3. 
    let signed_msg = { 

        let intermediate_txn = Transaction { 

            signature: [0u8; 64], 
            hash: [0u8; 32], 

            ..self.to_owned() 
        }; 

        Serializable::serialize(&intermediate_txn) 
    }; 

    public_key.verify(&signed_msg, &signature).map_err(|_| CryptographicallyIncorrectTransactionError::WrongSignature)?;
    // 4. 

    if self.hash != sha256(ed25519_dalek::ed25519::signature::Signature::as_bytes(&signature)) { 
        return Err(CryptographicallyIncorrectTransactionError::WrongHash) 

    } 

    Ok(()) 
} 

These checks include validations for minimum gas limit, block gas limit, base fee, block size limit, and cryptographic correctness.
Unfortunately, these checks are not applied to transactions when they are received as a broadcast from other nodes. This omission allows

malformed or incorrect transactions to be inserted into the mempool. 
Even though further checks may occur later in the execution of the transaction, the lack of immediate validation creates a vulnerability.

Recommendation



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 14 of 32

To resolve the vulnerability identified, it is essential to introduce the same series of validations applied in the submit_transaction

function to transactions when they are received through broadcast. This includes:

Minimum Gas Limit Check: Ensure the transaction has a minimum gas limit higher than the required minimum for the transaction
size and commands.

Block Gas Limit Check: Ensure the transaction doesn't exceed the current block gas limit.

Minimum Base Fee Check: Ensure the transaction's base fee is at or above the minimum required.

Transaction Size Check: Ensure the transaction size is smaller than the block size limit.

Cryptographic Correctness Check: Utilize the cryptographic checks performed by the is_cryptographically_correct  function,

ensuring the validity of the signature, hash, and other cryptographic elements.

Mempool Constraints Check: Return appropriate errors if the mempool is full or if the nonce provided is too low.

By implementing these checks at the reception stage for broadcasted transactions, the network can prevent malformed or incorrect
transactions from being inserted into the mempool. This approach aligns the handling of broadcasted transactions with the checks

performed on transactions sent from external accounts through the RPC API, thereby enhancing the overall integrity and robustness of the
transaction processing system.

Execution of Unauthorized Command in Epoch Transactions

This issue concerns the absence of checks during the execution of an epoch transaction to ascertain whether all commands within the

transaction are indeed accepted by the corresponding signer. When combined with the vulnerability described in PCN-015, it introduces
the possibility for a node to execute a command for which it lacks the authorization.

ID PCN-016

Scope Engine

Severity MEDIUM

Vulnerability Type Logic Error

Status Fixed (f3caf2d)

Description

Expanding on the details outlined in PCN-015, the validator responsible for creating an epoch transaction possesses the capability to

execute a command other than NextEpoch . This transaction, upon validation by other validators, undergoes simulation within the

execute_epoch_transaction  method. Notably, the checks conducted by this method deviate slightly from those in

execute_transactions . Specifically, there is a lack of scrutiny on whether all commands within the transaction are sanctioned for the

signer executing it.

Although the absence of these checks may not inherently present an issue when epoch transactions are ensured to exclusively feature

the NextEpoch  command, the lack of such assurance creates an avenue for validators to execute commands, even in scenarios where

the configurations of other nodes explicitly prohibit the acceptance of those commands from the respective signer.

Recommendation

The recommended course of action mirrors the advice provided in the preceding issue. During block validation, comprehensive checks

must be implemented to ensure that an epoch transaction solely contains the NextEpoch  command.

This measure will not only address the current concern but also contribute to the broader problem of inappropriate commands within
epoch blocks.

http://localhost:45697/%5BPCN-015%5D%5BLow%5Dnon_epoch_command_in_epoch_block
https://github.com/parallelchain-io/fullnode/commit/f3caf2d2c4e744446a2db0442ce61dfea35cf790
http://localhost:45697/%5BPCN-015%5D%5BLow%5Dnon_epoch_command_in_epoch_block


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 15 of 32

Runtime Panic Due to Untimely NextEpoch  Transaction

A runtime panic occurs when a transaction containing a single NextEpoch  command is submitted by a whitelisted signer.

ID PCN-013

Scope Runtime

Severity MEDIUM

Vulnerability Type Error Handling

Status Fixed (996cd5d and f3caf2d )

Description

The vulnerability originates from the usage of the unwrap()  within the next_epoch  function of the runtime. The specific line in question

is:

pchain-runtime/src/execution/protocol.rs:34:

let block_performance = state.bd.validator_performance.clone().unwrap(); 

Analyzing how the fullnode generates blocks, we observe that the produce_block  implementation incorporates distinct logic for situations

where the current block is intended to be the epoch block. Specifically, if the block is an epoch, a new epoch transaction is crafted.

Conversely, if the block is not an epoch, the subsequent transaction is executed from the mempool. Nonetheless, it remains
straightforward to generate and present a transaction containing a lone NextEpoch  command. This transaction will eventually undergo

processing via execute_from_mempool .

execute_from_mempool  relies on params_from_blockchain , obtained from the produce_block  function:

let params_from_blockchain = BlockchainParams { 

    /* Other fields */ 
    validator_performance: pacemaker::validator_performance( 

        self.kv_store.snapshot(), 

        self.config.blocks_per_epoch as u32, 
        this_block_number, 

        prev_block_hash, 
    ), 

}; 

The params_from_blockchain  variable is employed in the execute_from_mempool  in order to simulate the result of transition function.

Significantly, pacemaker::validator_performance  yields None  when dealing with non-epoch block numbers. Consequently, when a

transaction with a single NextEpoch  command traverses the runtime's transition  function alongside params_from_blockchain , it

triggers a panic due to the attempt to unwrap()  a None  value.

The success of this exploit pivots on whether the signer of the transaction is whitelisted for the NextEpoch  command. Configuration within

the nodes' settings allows for the whitelisting of the execution of the NextEpoch  command:

fullnode/config/config.toml:

[[engine.executor.tx_whitelist]] 
command = "NextEpoch" 

accept = ["malicious_signer_addr"] 

Conversely, if nodes do not enforce limitations on the execution of the NextEpoch  command within their configuration, any individual can

transmit a transaction that will result in a runtime panic.

https://github.com/parallelchain-io/pchain-runtime/commit/996cd5d2739ecff1600e6220e17d651c0429a658
https://github.com/parallelchain-io/fullnode/commit/f3caf2d2c4e744446a2db0442ce61dfea35cf790


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 16 of 32

The panic is captured by catch_unwind  within the fullnode, which leads to the exclusion of the transaction from the blockchain.

Furthermore, the sender's account evades any deduction of fees for this transaction.

It is important to acknowledge that nodes compiled with the configuration:

[profile.release]  

panic = "abort" 

will immediately crash upon encountering the panic.

Recommendation

To mitigate this issue, consider the following steps:

Error-Handling Strategy Enhancement: Implement an advanced error-handling strategy within the runtime's codebase. Replace

occurrences of methods that lead to panic, such as unwrap  and panic , with error-returning mechanisms. This transition to returning

and appropriately handling error results will contribute to the overall robustness of the system.

Refinement of NextEpoch Logic: Conduct a meticulous review of the NextEpoch  command's logic within the fullnode. Consider

options to either restrict its inclusion in the mempool or confine its addition solely to epoch blocks. This strategic refinement will serve

to mitigate the risk of triggering panics in the runtime due to the presence of the NextEpoch  command.

Comprehensive Testing: Establish a comprehensive testing framework that covers various scenarios involving the NextEpoch

command and its interactions with the runtime. This should encompass cases where the command is executed within different block
types, as well as instances of authorized and unauthorized usage. Rigorous testing can help identify and rectify any remaining

vulnerabilities.

Private Key Stored Unencrypted

The node operator's private key is stored without encryption, exposing it to potential unauthorized access and misuse.

ID PCN-017

Scope Cryptography

Severity LOW

Vulnerability Type Insecure Data Storage

Status Fixed (92b5e2c)

Description

During our security review, it was identified that the node operator's private key is stored in an unencrypted format within a text file.
Specifically, the private key is stored in base64 encoding but lacks any form of cryptographic protection. The file in question is named

keypair.json  in default node configuration settings. 

The presence of an unprotected private key poses a potential risk, as anyone with access to this file can potentially utilize the private key
for unauthorized activities.

If an attacker exploits network vulnerabilities, system/OS flaws, or weaknesses in other software running on the server, they could gain
access to the keypair.json file containing the unencrypted private key. With this key, they can execute unauthorized transactions on the

blockchain and even impersonate the node operator for various malicious activities. This vulnerability not only poses a direct threat but
may also erode stakeholders' confidence in the system's security measures.

Recommendation

https://github.com/parallelchain-io/fullnode/commit/92b5e2ca15233daf291f3bdca203577d0e4ffef5


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 17 of 32

To remediate this vulnerability, we recommend the following:

1. Encryption at Boot: Implement a mechanism to securely request the decryption of the node operator's private key during the node's
boot process. The private key should be stored encrypted using strong, industry-recognized cryptographic algorithms such as AES-

256-GCM  or ChaCha20-Poly1305  within the keypair.json file.

2. Use of Zeroize Crate: Ensure that any unencrypted representation of the private key in memory is properly scrubbed using tools like
the zeroize  crate, which is designed to securely zero out sensitive data from memory.

3. Education: Provide documentation and training materials to node operators, emphasizing the importance of securing their private

keys and the potential risks associated with storing keys unencrypted.

Although the vulnerability is rated as low, the fundamental importance of private key security in a blockchain environment cannot be

overstated. Given the straightforward nature of the recommended remediations, it is advisable to address this vulnerability in a timely
manner to uphold best security practices.

Misaligned Pointer Dereference in Wasmer-VM Crate

A misaligned pointer dereference vulnerability has been identified in the wasmer-vm  crate affecting some apple device running with

ARM64 architecture.

ID PCN-019

Scope Runtime/Dependencies

Severity LOW

Vulnerability Type Misaligned Pointer Dereference

Status Acknowledged

Description

When running wasmer  on certain Apple devices with ARM64 architecture, a misaligned pointer dereference occurs when a trap is

handled for managing wasmer  runtime errors. This is due to an incorrect cast towards the libc::ucontext_t  type, as described in this

issue on the wasmer  repository. This issue triggers a panic with the message:

thread panicked at 'misaligned pointer dereference: address must be a multiple of 0x10 but is 0x101a4fc18', /Users/hacke

Recommendation

To mitigate this issue, the following actions should be taken:

1. Upgrade to Version 4.1.1 or Later: As stated in the changelog, the fix for this misalignment issue has been applied starting from

version 4.1.1 of the wasmer  crate with pull request #4120. Upgrading to this version or a later one will resolve the issue but can

introduce breaking changes.

2. Test on Affected Architectures: Ensure that any changes are thoroughly tested on the affected Apple devices with ARM64
architecture, in addition to other platforms, to confirm that the fix is effective and does not introduce new issues.

3. Inform Users about Supported Architectures: If a decision is made not to patch the issue, it is essential to communicate to users
which architectures are supported and which may encounter this problem. Clear documentation on this matter will help users

understand the limitations and make informed decisions about their use of the product.

https://github.com/wasmerio/wasmer/issues/4072
https://github.com/wasmerio/wasmer/blob/master/CHANGELOG.md#411---03082023
https://github.com/wasmerio/wasmer/pull/4120


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 18 of 32

Non-Epoch Commands in Epoch Transaction

This issue pertains to the epoch block's intended purpose of containing transactions with only the NextEpoch  command. However, it has

been observed that the epoch block can unintentionally accommodate transactions with different commands.

ID PCN-015

Scope Engine

Severity LOW

Vulnerability Type Logic Error

Status Fixed (f3caf2d)

Description

The pivotal process responsible for generating epoch transactions lies within the epoch_transaction  method:

paralellchain-fullnode/src/engine/executor.rs:228:

pub(in crate::engine) fn epoch_transaction( 
    &self, 

    world_state: &WorldState<SpeculativeStore>, 
) -> Transaction { 

    let nonce = world_state.nonce(self.public_address()); 

    Transaction::new(&self.keypair, nonce, vec![Command::NextEpoch], 0, 0, 0) 
} 

This method forms the foundation for creating the necessary transactions utilized by the produce_block  function. The purpose is to

simulate execution outcomes and potential validator changes.

While the epoch_transaction  method is designed with appropriate logic, a vulnerability arises when malicious nodes exploit the code by

creating alternative transactions. This can be accomplished by modifying the code, for instance:

let command = Command::SetPoolSettings(SetPoolSettingsInput { commission_rate: 42 }); 
Transaction::new(&self.keypair, nonce, vec![command], 500000000, 10, 0) 

Nodes with modified code, when tasked with producing an epoch block, generate a block that incorporates an erroneous transaction. The
absence of validation for this scenario leads to the acceptance of such transactions by other nodes, followed by progression to the

subsequent non-epoch block.

While this issue may not necessarily lead to direct attack scenarios, it disrupts the blockchain's functioning. It allows a situation in which all

nodes skip the transition to the next epoch, thereby bypassing validator changes and reward allocations to stakers.

Additionally, this loophole could potentially assist a node in evading certain restrictions, as epoch transactions undergo a slightly different

validation process compared to other transactions. This specific aspect will be addressed in PCN-016.

Recommendation

To rectify this concern, it is advisable to incorporate an additional validation check within the validate_block  function. This check would

ensure that epoch blocks exclusively contain transactions featuring the singular NextEpoch  command.

Implementing this safeguard guarantees that all nodes can validate this requirement, subsequently only permitting the NextEpoch

command for epoch blocks.

https://github.com/parallelchain-io/fullnode/commit/f3caf2d2c4e744446a2db0442ce61dfea35cf790
http://localhost:45697/%5BPCN-016%5D%5BMedium%5Dunauthorized_command_in_epoch_transactions


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 19 of 32

Potential Panic Due to Unsafe Balance Management

In the pchain-runtime , several instances of unsafe arithmetic operations were identified, potentially leading to panics in the code

execution.

ID PCN-009

Scope Arithmetic

Severity LOW

Vulnerability Type Integer overflow

Status Fixed (b6d86f6)

Description

Several unsafe operations, discussed in more detail in PCN-007, pose a risk of integer overflow. While the probability of such overflows is

relatively low due to the requirement of a large number of blocks, certain operations related to balance transfers, stake management, and
deposits could present a higher potential risk.

Although the occurrence of these panics is impossible with the current total amount of tokens in existence, it is crucial to address these
concerns proactively to prevent any future vulnerabilities. The overflows would trigger panics in the runtime, which would be caught using

catch_unwind  in the fullnode. It's important to note that if the node was compiled with panic = "abort"  in the release profile, the panic

would lead to an immediate crash of the node.

The specific operations that have the potential for dangerous overflows are listed below:

Transfer balances:

Between accounts: pchain-runtime/src/execution/account.rs:88:

state.set_balance(recipient, recipient_balance + amount); 

When account calls a smart contract: 

pchain-runtime/src/execution/account.rs:120:

state.set_balance(target, target_balance + amount); 

When invoking a contract from another contract: 
pchain-runtime/src/execution/internal.rs:59:

let to_address_new_balance = to_address_prev_balance + value;

From a contract: 

pchain-runtime/src/execution/internal.rs:138:

let to_address_new_balance = to_address_prev_balance + amount; 

Deposit management:

When topping up a deposit: 

pchain-runtime/src/execution/staking.rs:243:

deposits.set_balance(deposit_balance + amount); 

https://github.com/parallelchain-io/pchain-runtime/commit/b6d86f6d8043e770a9c5c232355e203a02f31ed2
http://localhost:45697/%5BPCN-007%5D%5BInformational%5Dunsafe_arithmetics.md


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 20 of 32

When withdrawing a deposit: 

pchain-runtime/src/execution/staking.rs:309:

state.set_balance(owner, owner_balance + deposit_balance - new_deposit_balance); 

When increasing stake power: 
pchain-runtime/src/execution/staking.rs:567, 576:

power: stake_power + stake_power_to_increase, 

Recommendation

To safeguard against potential Denial-of-Service (DoS) attacks resulting from arithmetic overflow in the runtime, it is essential to utilize the

Rust Standard Library's built-in methods, as recommended in PCN-007, to prevent arithmetic overflows and panics in the runtime.

You should implement robust error handling and graceful recovery for potential overflow cases. Transactions involving these operations

should be marked as "failed".

Taking these precautions will enhance the security and stability of the application, reducing the risk of potential DoS attacks caused by

unsafe balance management. It is crucial to prioritize addressing these issues promptly to prevent any potential vulnerabilities in the
codebase.

Unrestricted SetPoolSettings  Transactions Despite Whitelist Configuration

Despite configuring the node to whitelist the SetPoolSettings  command for specific accepted signers, a vulnerability exists wherein the

command remains unrestricted, allowing any signer to submit transactions with this command.

ID PCN-014

Scope Engine

Severity LOW

Vulnerability Type Logic Error

Status Fixed (f3caf2d)

Description

The ability to whitelist any command is provided for the purpose of limiting transaction submission rights exclusively to specified signers.

This configuration is executed in the following manner:

fullnode/config/config.toml:

[[engine.executor.tx_whitelist]] 
command = "SetPoolSettings" 

accept = ["addr1", "addr2", "addr3"] 

However, even in scenarios where nodes are configured as aforementioned, the flaw lies in the implementation of the

is_whitelisted_command  method, due to a typographical error:

paralellchain-fullnode/src/engine/executor.rs:366:

Command::SetPoolSettings { .. } => self.command.as_str() == "setpoolpettings", 

http://localhost:45697/%5BPCN-007%5D%5BInformational%5Dunsafe_arithmetics.md
https://github.com/parallelchain-io/fullnode/commit/f3caf2d2c4e744446a2db0442ce61dfea35cf790


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 21 of 32

The inadvertent typo of "setpoolpettings"  instead of the correct "setpoolsettings"  within the aforementioned line results in the

is_whitelisted_command  method constantly returning false  for the SetPoolSettings  command. Consequently, the method

is_not_accepted  also returns false . This misconfiguration negates the intended purpose of the command as a whitelisted item,

allowing the creation of SetPoolSettings  transactions without proper restriction.

Recommendation

To rectify this issue, it is important to correct the typographical error as follows:

Command::SetPoolSettings { .. } => self.command.as_str() == "setpoolsettings", 

Additionally, it is advised to rigorously test all functionalities to proactively identify and resolve similar errors, ensuring the integrity of the

system's security mechanisms.

Unsoundness Issue in Borsh Dependency

An unsoundness issue has been discovered in the Borsh dependency.

ID PCN-012

Scope Dependencies

Severity LOW

Vulnerability Type Undefined Behavior

Status Fixed (8903746, b6d86f6, fcc6b4b, 7275672)

Description

The borsh crate (version 0.10.2) used by Parallelchain node and its dependencies is identified as having an unsoundness issue, as
outlined in the RustSec advisory RUSTSEC-2023-0033. This issue relates to potential unsoundness when parsing borsh messages with

Zero-Sized Types (ZSTs) that do not implement Copy  or Clone  traits.

Here is the output from the cargo audit for reference:

Crate:     borsh 

Version:   0.10.2 
Warning:   unsound 

Title:     Parsing borsh messages with ZST which are not-copy/clone is unsound 
Date:      2023-04-12 

ID:        RUSTSEC-2023-0033
URL:       https://rustsec.org/advisories/RUSTSEC-2023-0033 

The unsoundness could lead to unexpected program behavior, including memory corruption, and in severe cases, potential security
vulnerabilities. This can happen when ZSTs that do not implement Copy  or Clone  are involved in the serialization/deserialization

processes.

However, an examination of the parallelchain node codebase and the associated crates indicates that it does not employ any ZSTs that
utilize BorshSerialize / BorshDeserialize  without implementing Copy  or Clone . As such, while this issue is present in the borsh

dependency, the specific usage in the parallelchain node and its dependencies does not expose it to the associated risks.

Worth noting is that within the Cargo.toml of the Parallelchain node and its associated crates (runtime, worldstate, and types), the borsh
version remains affixed to 0.10.2 .

Recommendation

https://github.com/parallelchain-io/fullnode/commit/8903746b274bd97e14a64fccdc0164bccb89d007
https://github.com/parallelchain-io/pchain-runtime/commit/b6d86f6d8043e770a9c5c232355e203a02f31ed2
https://github.com/parallelchain-io/pchain-world-state/commit/fcc6b4b6ba538352dcb9f7ab50e5eb5a7158ed2d
https://github.com/parallelchain-io/pchain-types-rust/commit/7275672f49e8c9358e629ccf8bb444a83af4b0d4
https://rustsec.org/advisories/RUSTSEC-2023-0033


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 22 of 32

As of the latest information, the aforementioned issue in the borsh crate, specifically described in near/borsh-rs#19, has been addressed

and merged into the master branch with the pull request near/borsh-rs#145. However, it's worth noting that, as of the time of writing this
report, the fix has not been included in a stable release, as mentioned in the comments of the pull request.

This means that, while a resolution exists for the unsoundness problem, the fix is not readily available for direct consumption through
traditional dependency update mechanisms. Organizations relying on the borsh crate should be cognizant of this delay and plan their

integration strategies accordingly.

For the way forward, we propose:

1. Monitoring Borsh Crate Iterations: Regularly check the borsh crate's release updates, focusing on versions succeeding 0.10.2 .

This ensures the integration of the fix as soon as it's rolled out in a stable release.

2. Strengthen Internal Audits: Maintain rigorous internal code audits to ascertain that ZSTs, which bypass the Copy  or Clone  traits

yet lean on BorshSerialize / BorshDeserialize , aren't inadvertently introduced. This preemptive measure will cushion against

potential risks while we await the borsh fix.

3. Consider Version Unpinning: Reevaluate the strategy of pinning the borsh version at 0.10.2 . By adjusting this, the team can

seamlessly tap into the latest patches and fixes borsh offers.

By adhering to these strategies and fostering a keen awareness around dependency management, coupled with internal coding best
practices, the team can maximize the borsh crate's capabilities without compromising the system's integrity.

Compilation error due to dependency hotstuff_rs

The FullNode repository fails to build.

ID PCN-011

Scope Build Process

Status Fixed (b24dcc0)

Description

The FullNode repository, an implementation of the Parallelchain node, fails to build.

The cargo build --release  command fails with the following error:

   Compiling fullnode v0.4.2 (/Users/hacken/Projects/L1Parallelchain/paralellchain-fullnode) 

error[E0599]: no method named `set_highest_entered_view` found for struct `BlockTree` in the current scope 
   --> src/main.rs:223:24 

    | 

223 |             block_tree.set_highest_entered_view(view); 
    | 

The missing method is from the hotstuff_rs  library, and it was renamed from set_highest_entered_view  to

set_highest_view_entered  in version 0.2.1.

This breaks the build chain, because the hotstuff_rs  version is set to 0.2.0 in the Cargo.toml file, which allows for any versions 0.2.x

following the cargo versioning system.

Recommendation

This issue arises due to a dependency on a specific version of the hotstuff_rs  library that has undergone a breaking change. Here are

some measures that can mitigate and prevent such issues in the future:

https://github.com/near/borsh-rs/issues/19
https://github.com/near/borsh-rs/pull/145
https://github.com/parallelchain-io/fullnode/commit/b24dcc08198af77fefee5231564b93a68bf8472d
https://github.com/parallelchain-io/hotstuff_rs/commit/3de54dddfc81e4ec5a91dbb7c02e4c326eb443e1


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 23 of 32

1. Dependency Pinning: Pin the hotstuff_rs  library to the specific version that your code is compatible with. To do this, instead of

hotstuff_rs = "0.2.0"  which allows for any 0.2.x  versions, use hotstuff_rs = "=0.2.0" . This ensures that your code always

builds with the correct version of the dependency, eliminating build failures due to incompatible library updates.

2. Dependency Updation: Regularly update dependencies to their latest versions and accordingly modify your codebase. This not only
prevents potential security issues but also allows you to take advantage of the latest features and improvements. In this case, it would

mean updating the FullNode repository to use the set_highest_view_entered  method from the hotstuff_rs  library.

3. Semantic Versioning: Enforce strict semantic versioning (semver) for the hotstuff_rs  library and all other dependencies. For

0.x.x  versions, increment the minor version in the event of potentially breaking changes. For versions 1.x.x  and beyond,

increment the major version.

4. Continuous Integration: Implement a robust Continuous Integration (CI) pipeline that includes building the application with every

change that is pushed to the repository. This helps to identify such build errors at an early stage.

By following these steps, the risk of build failures due to changes in dependencies can be minimized.

Correct transactions can be dropped

Transactions sent in a batch with a small time gap between them are being dropped.

ID PCN-006

Scope Mempool / Nonce Synchronization

Status Acknowledged

Description

During testing of transaction behavior, it was observed that if a sender submits a batch of transactions with a small time gap between them
(approximately 6 seconds in our test), starting from a certain transaction, all subsequent transactions are dropped with a status code

indicating an Nonce inaccesible  error.

The cause of this behavior can be traced to the implementation of the insert  function in the Mempool<N: NonceProvider> :

if let Some(txns) = self.txns.get_mut(&txn.signer) { 
    /* Logic for the case when there already are some transactions */ 

} else { 

    // There are no Transactions in the Mempool that come from the signing Account. 
    if txn.nonce == self.committed_nonces.get(txn.signer) { 

        /* Logic for adding the transaction to the mempool if it contains the correct nonce */ 
        Ok(()) 

    } else { 
        Err(UnacceptableNonceError::Inaccessible) 

    } 
} 

This logic may not work correctly if all previous transactions from the same signer were removed from the mempool, but the nonce has not
yet been updated.

Transactions are popped out of the mempool during the execution of the execute_from_mempool  function, which is called to produce a

block. As a result, the list of transactions in the mempool from the signer can be emptied as soon as blocks with these transactions are
produced.

However, the nonce, calculated using self.committed_nonces.get(txn.signer) , is only changed after the block is committed.

The self.committed_nonces  variable has the type:

https://github.com/hknio/paralellchain-fullnode/blob/50e04772508f3212744976f33b1c42d3a18c75ba/src/engine/executor.rs#L68


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 24 of 32

pub(crate) struct NonceStore(pub BlockTreeDB); 

and the calculation of the nonce in the get  method relies on the internal BlockTreeDB .

This BlockTreeDB  is initialized when the node starts:

let block_tree_db = block_tree::open(&block_tree_config); 

Later, it is cloned and asynchronously updated in multiple threads. It is also used for the HotStuff consensus algorithm:

// start consensus engine 
let _replica = Replica::start( 

    engine, 
    my_keypair, 

    node_network, 
    block_tree_db.clone(), 

    engine::pacemaker::PaceMaker::new(pacemaker_config), 
); 

It is important to note that the BlockTreeDB  uses a reference-counting pointer to store the database, allowing HotStuff to modify the

BlockTree stored by this pointer.

In the HotStuff implementation, when a proposal is received and validate_block()  returns a correct block, the block is inserted into the

BlockTree:

let validator_set_updates_because_of_commit = block_tree.insert_block( 

    &proposal.block, 
    app_state_updates.as_ref(), 

    validator_set_updates.as_ref(), 
); 

This insertion ultimately leads to a change in the nonce.

While this behavior does not pose an immediate and serious security risk, dropping correct transactions that should have been included in

the block is considered a design flaw. It is inconvenient and counterintuitive.

However, there is a potential security risk if a third party gains knowledge about the dropped transaction. If the nonce, signature, and

details of the commands are known, this third party can resend the transaction. The transaction would be accepted because it contains
correct data and a valid signature, even though the original sender did not resend the transaction and may not want it to be processed

again. This consideration, combined with PCN-007, opens a window for potential misbehavior, leading to a security issue.

Recommendation

It is imperative to address the nonce synchronization issue among all relevant modules, including the mempool, Worldstate, and

consensus. Resolving this discrepancy may necessitate a change in the software architecture, potentially adding to its complexity. Proper
evaluation and meticulous planning will be essential to ensure that while making these changes, the system remains robust, efficient, and

easy to maintain.

Global Mutable Static Variable within Unsafe Block in rpc::state::view  Function

Global mutable static variable STATIC_BLOCKTREEDB  used within an unsafe block is non-idiomatic Rust, posing potential challenges in

future development.

ID PCN-010

Scope RPC State View

Status Acknowledged

https://github.com/parallelchain-io/hotstuff_rs/blob/67e6d76050afe6fa76e85b66fe41fb4b41cdc012/src/algorithm.rs#L311
http://localhost:45697/%5BPCN-007%5D%5BLow%5Ddropped_transactions_on_explorer.md


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 25 of 32

Description

The view  function within the RPC State component employs a global mutable static variable STATIC_BLOCKTREEDB  within an unsafe

block. This method of programming is not idiomatic Rust and bypasses the safety features that Rust provides.

The function in question is as follows, found in src/rpc/state.rs:251:

pub(crate) unsafe fn view( 
    request: ViewRequest, 

    state_hash: CryptoHash, 
    block_tree_db: BlockTreeDB, 

    sc_cache: &Option<PathBuf>, 
    gas_limit: u64, 

) -> ViewResponse { 

    static mut STATIC_BLOCKTREEDB: MaybeUninit<BlockTreeDB> = MaybeUninit::uninit(); 
    let block_tree_snapshot = unsafe { 

        STATIC_BLOCKTREEDB.as_mut_ptr().write(block_tree_db); // update block_tree_db 
        (*STATIC_BLOCKTREEDB.as_ptr()).snapshot() // snapshot inherits static life time from the caller (STATIC_BLOCKTRE

    }; 
    // remaining code 

} 

Currently, STATIC_BLOCKTREEDB  is only accessed within the context of a single thread, avoiding potential race conditions. However, this

usage of a global mutable static variable within an unsafe  block can lead to potential maintenance difficulties, or create bugs that are

hard to trace in the future.

The use of unsafe  should be minimized in Rust code. In cases where it's necessary, adequate justification and explanation should be

provided. In this particular case, there are safer alternatives available instead of using a mutable static variable, such as passing the
block_tree_db  directly to the view  function.

Recommendation

Refactoring the code to pass block_tree_db  directly to the view  function would eliminate the need for the unsafe  block and the

mutable static variable STATIC_BLOCKTREEDB . This would simplify the code, improve readability, and maintain Rust's safety guarantees.

When shared state or mutability is required, Rust provides safer alternatives such as Mutex or RwLock, which are preferred over unsafe

constructs. Utilizing these safe constructs can mitigate the risk of race conditions and undefined behaviors.

When unsafe  blocks and mutable statics are deemed necessary, they should be accompanied by a detailed explanation, justifying their

usage and explaining why they're considered safe. This would provide important context to reviewers and future maintainers of the code.

As part of the ongoing code quality assurance process, it is recommended to include specific tests for concurrency and mutation. These
tests can help prevent the introduction of data races or undefined behaviors as the codebase evolves.

Inconsistent Code Formatting

A cargo fmt  check reveals inconsistent formatting in codebase and all crates in scope of the audit.

ID PCN-003

Scope Code Formatting

Status Acknowledged

Description



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 26 of 32

Code formatting is essential for maintaining the readability and maintainability of the codebase. Inconsistent code formatting can lead to

unnecessary diffs in the version control system, which can in turn complicate code reviews and make it more difficult to identify
substantive changes.

The cargo fmt -- --check  command was used to run a simulation that identifies parts of the code that would be reformatted. This

command does not modify the code but prints out how the files would look after formatting.

Recommendation

We recommend running cargo fmt  on the entire codebase of the ParallelChain node and all crates within the scope of the audit to

ensure that all code adheres to the standard Rust formatting conventions. This can help improve the readability and maintainability of the

codebase.

In addition, to prevent the introduction of improperly formatted code in the future, you may want to consider adding a cargo fmt -- --

check  step to your continuous integration (CI) pipeline. This would alert developers to formatting issues in their code before it is merged

into the main codebase.

Linter Warnings

cargo clippy  generates numerous warnings that should be addressed to improve the overall code quality.

ID PCN-002

Scope Linters

Status Acknowledged

Description

The codebase has been analyzed using cargo clippy , which has generated multiple warnings related to the Fullnode and Network

crates. These warnings highlight potential issues in the code that should be addressed to improve overall code quality. The warnings can
indicate various problems, including unoptimized or inefficient code, non-idiomatic Rust patterns, redundant or unnecessary code, and

potential coding errors or logic flaws.

The specific warnings generated by cargo clippy  are as follows:

Fullnode

9 warnings were generated:

module_inception

4 occurrences of needless_borrow

enum_variant_names

useless_conversion

unnecessary_cast

expect_fun_call

Network

The Network crate generated one warning:

new_without_default

On the other hand, the code of the Runtime, World State and Types crates did not generate any clippy warnings.

https://github.com/parallelchain-io/pchain-network/tree/90367aa1cd08824197cdf8f7d1d34a9c80661ac4
https://rust-lang.github.io/rust-clippy/master/index.html#/module_inception
https://rust-lang.github.io/rust-clippy/master/index.html#needless_borrow
https://rust-lang.github.io/rust-clippy/master/index.html#/enum_variant_names
https://rust-lang.github.io/rust-clippy/master/index.html#/useless_conversion
https://rust-lang.github.io/rust-clippy/master/index.html#unnecessary_cast
https://rust-lang.github.io/rust-clippy/master/index.html#/expect_fun_call
https://github.com/parallelchain-io/pchain-network/tree/90367aa1cd08824197cdf8f7d1d34a9c80661ac4
https://rust-lang.github.io/rust-clippy/master/index.html#new_without_default
https://github.com/parallelchain-io/pchain-runtime/tree/9f3209144743b889b8723889252ffb4afd53bf4b
https://github.com/parallelchain-io/pchain-world-state
https://github.com/parallelchain-io/pchain-types-rust/tree/1dc39d5d942156a2e468bcb09dcf1afe41c0a11f


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 27 of 32

Ignoring these warnings may result in a codebase that is harder to maintain, potentially leading to performance issues and even security

vulnerabilities. To ensure a high-quality and maintainable codebase, it is essential to address all the warnings generated by cargo

clippy .

It is worth noting that cargo clippy  is currently configured to generate warnings primarily for the default set of lints. However, there

might be additional issues that can be discovered by enabling and carefully examining supplementary lints. These potential issues will be
systematically addressed in separate future issues.

Recommendation

To maintain a high-quality and easily maintainable codebase, it is crucial to address all the warnings generated by cargo clippy . This

can be achieved by following these steps:

Address all warnings generated by cargo clippy .

Apply appropriate code changes following Rust's best practices.

Regularly run cargo clippy to catch new warnings and maintain code quality.

By proactively addressing linter warnings, you improve the overall code quality and foster adherence to Rust's best practices, leading to a
more robust and secure project.

RPC submit_transaction Inadequate Logging Detail

Insufficient detail provided upon transaction submission failure.

ID PCN-005

Scope RPC Auditing and Logging

Status Acknowledged

Description

The submit_transaction  handler of the Transaction-related API does not provide adequate information in the event of a transaction

failure. The current level of detail in logging can pose a challenge for issue identification and rectification.

The associated function in question is presented below in full node crate: 
src/rpc/transaction.rs:27:

pub(crate) async fn submit_transaction( 
    request: SubmitTransactionRequest, 

    tx_size: usize, 
    sync_mempool: SyncMempool<NonceStore>, 

) -> SubmitTransactionResponse { 
    let tx = request.transaction; 

    // Ensure the transaction has a minimum gas limit higher than the minimum cost for the transaction. 
    if tx.gas_limit < pchain_runtime::gas::tx_inclusion_cost(tx_size, tx.commands.len()) { 

        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 
    } 

    // Ensure the transaction doesn't exceed the current block gas limit. 

    if tx.gas_limit > BLOCK_GAS_LIMIT as u64{ 
        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 

    } 
    // Ensure the transaction base fee is greater than or equal to the minimum 

    if tx.max_base_fee_per_gas < MIN_BASE_FEE{ 
        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 

    } 
    // Ensure the transaction size is smaller than the block size limit 

    if tx_size > BLOCK_SIZE_LIMIT { 
        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 28 of 32

    } 

    // Ensure the transaction can be converted from pchain_types::blockchain::Transaction 
    // to pchain_types::blockchain::Transaction 

    if tx.is_cryptographically_correct().is_err(){ 
        return SubmitTransactionResponse { error: Some(SubmitTransactionError::Other)} 

    } 
    // Return error if mempool is full or wrong nonce is provided 

    if let Err(error) = sync_mempool.insert(tx) { 
        return SubmitTransactionResponse { 

            error: Some(match error { 
                InsertTxError::NonceTooLow => SubmitTransactionError::UnacceptableNonce, 

                InsertTxError::MempoolFull => SubmitTransactionError::MempoolFull, 

            }), 
        }; 

    } 
    SubmitTransactionResponse { error: None } 

} 

The SubmitTransactionError::Other  error is returned in various instances. This practice lacks specificity and can complicate

troubleshooting efforts.

Recommendation

We recommend improving the granularity of the SubmitTransactionError  enum in the pchain-types  crate. This can be achieved by

assigning unique and descriptive identifiers to each potential error condition. Here's an updated version of the SubmitTransactionError

enum with new error variants:

#[derive(Debug, Clone, BorshSerialize, BorshDeserialize)] 
pub enum SubmitTransactionError { 

    UnacceptableNonce, 
    MempoolFull, 

    GasLimitTooLow, 
    GasLimitTooHigh, 

    BaseFeeTooLow, 
    TransactionSizeTooLarge,

    FailedCryptographicCheck, 
    Other, 

} 

With these modifications, each unique error in the submit_transaction  function will return a distinct and descriptive error variant,

enhancing error interpretability, and contributing to more efficient problem identification and resolution.

std::panic::catch_unwind() usage

Usage of std::panic::catch_unwind()  as a general try/catch mechanism.

ID PCN-018

Scope Error Handling

Status Acknowledged

Description

All calls to state_transition::simulate  for the execution of transactions are made within a std::panic::catch_unwind  block. This

usage is indicative of a code quality issue, as it may lead to improper error handling, potentially masking underlying issues or bugs.
Notably, this catch-all error handling made it challenging to uncover issue PCN-008 that leads to a runtime panic.

Recommendation

http://localhost:45697/%5BPCN-008%5D%5BCritical%5Dhigh_priority_fee_causes_overflow.md


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 29 of 32

1. Replace with Specific Error Handling: Instead of using std::panic::catch_unwind  as a catch-all mechanism, identify the specific

exceptions or errors that might occur, and handle them explicitly using Rust's standard error handling techniques.

2. Utilize Proper Logging: Implement comprehensive logging that captures errors and exceptions, facilitating effective monitoring,

troubleshooting, and analysis.

3. Adopt Code Quality Standards: Encourage adherence to best practices for error handling, which can lead to a more robust and

maintainable codebase.

While this issue may not pose a direct threat to the security of the system, it reflects an area where code quality can be improved.

Addressing it will contribute to more transparent and proper error handling, enhancing the overall maintainability and integrity of the
software.

Test coverage

The current test coverage of the project is commendable, adequately addressing the critical sections. Nevertheless, there are

opportunities for minor refinements in specific areas to meet the industry recommended standards.

ID PCN-004

Scope Code Quality / Testing

Status Fixed

Description

We recommend utilizing the cargo tarpaulin command to assess code coverage. Running the following command will generate an HTML

file with detailed coverage information for each file:

cargo tarpaulin --out Html --output-dir ./tarpaulin-report 

The generated HTML file provides coverage statistics for each crate and file, including the number of lines covered and the percentage of
coverage.

Full Node

Covered: 671 of 919 (73.01%)

File / Directory Coverage

engine 558 / 697 (80.06%)

rpc 269 / 467 (57.60%)

server 194 / 228 (85.09%)

storage 99 / 114 (86.84%)

config.rs 77 / 82 (93.90%)

consensus.rs 15 / 24 (62.50%)

genesis.rs 38 / 40 (95.00%)

main.rs 92 / 131 (70.23%)

mempool.rs 86 / 103 (83.50%)

network.rs 27 / 32 (84.38%)



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 30 of 32

The coverage statistics indicate that the component rpc , file consensus.rs  and file main.rs  currently have lower test coverage.

pchain-runtime

Covered: 1885 of 2252 (83.70%)

File / Directory Coverage

contract 407 / 503 (80.91%)

execution 860 / 939 (91.59%)

wasmer 211 / 376 (56.12%)

cost.rs 19 / 19 (100.00%)

error.rs 12 / 15 (80.00%)

formulas.rs 5 / 6 (83.33%)

gas.rs 87 / 97 (89.69%)

read_write_set.rs 189 / 201 (94.03%)

transition.rs 84 / 85 (98.82%)

types.rs 11 / 11 (100.00%)

The coverage statistics indicate that the component wasmer  currently has lower test coverage, particularly non_determinism_filter.rs

has a test coverage of just 17.49%.

pchain-world-state

Covered: 671 of 919 (73.01%)

File / Directory Coverage

network 332 / 406 (81.77%)

error.rs 3 / 7 (42.86%)

keys.rs 33 / 54 (61.11%)

states.rs 151 / 284 (53.17%)

storage.rs 71 / 72 (98.61%)

trie.rs 81 / 96 (84.38%)

The coverage statistics indicate that the files error.rs , keys.rs , and states.rs  currently have lower test coverage.

pchain-types-rust

No test coverage.

pchain-network

No test coverage.



Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 31 of 32

Recommendation

While the current test coverage is commendable, there's always room for enhancement. We recommend introducing tests for pchain-

network  and pchain-types  crates, and further improving the test coverage in other crates to strive towards the industry-recommended

benchmark of 80% coverage.

Unsafe arithmetics

Multiple instances of unsafe arithmetic operations were discovered in the codebase. These unchecked operations have the potential to

cause unpredictable and potentially harmful side effects in your application, particularly concerning arithmetic overflows.

ID PCN-007

Scope Arithmetic

Status Acknowledged

Description

Arithmetic operations that are not properly safeguarded could lead to critical errors such as overflows, which in some cases During the

code audit, multiple instances of unsafe arithmetic operations were identified in the codebase. These unchecked operations have the
potential to cause unpredictable and potentially harmful side effects, such as arithmetic overflows, in your application. These issues can

lead to critical errors, crashes, and even security vulnerabilities.

While certain calculations might seem unlikely to trigger an overflow due to their high threshold, others may pose a more imminent risk. To

thoroughly identify all instances of unsafe arithmetic operations in your codebase, you can execute the following command:

cargo clippy -- -W clippy::arithmetic_side_effects 

When you run this command on different parts of the project, it generates several warnings related to the use of potentially unsafe

arithmetic:

63 warnings from pchain-runtime

23 warnings from paralellchain-fullnode

19 warnings from pchain-world-state

2 from pchain-network

Note that pchain-types-rust does not exhibit any issues with unsafe arithmetic.

Additionally, within paralellchain-fullnode/src/engine/engine.rs , three instances of checked_add  immediately followed by unwrap

have been identified. The use of safe arithmetic methods is rendered ineffective by unwrapping the result.

Some of these instances may have a more significant impact and pose security risks, which will be addressed in the subsequent issue.

Recommendation

To mitigate potential vulnerabilities in your codebase, it is strongly recommended to use Rust Standard Library's built-in methods for safer
arithmetic computations. These include checked_add/sub/mul/div , saturating_add/sub/mul/div , overflowing_add/sub/mul/div ,

and others. Implementing these safe arithmetic methods will help you effectively manage the potential risks associated with arithmetic

overflows and maintain a more secure and stable application.

https://github.com/parallelchain-io/pchain-runtime/tree/9f3209144743b889b8723889252ffb4afd53bf4b
https://github.com/parallelchain-io/pchain-world-state
https://github.com/parallelchain-io/pchain-network/tree/90367aa1cd08824197cdf8f7d1d34a9c80661ac4
https://github.com/parallelchain-io/pchain-types-rust/tree/1dc39d5d942156a2e468bcb09dcf1afe41c0a11f


Hacken OÜ 

Parda 4, Kesklinn, Tallinn 

10151 Harju Maakond, Eesti 

Kesklinna, Estonia 

support@hacken.io

Page 32 of 32

Disclaimers

Hacken disclaimer

The code base provided for audit has been analyzed according to the latest industry code quality, software processes and cybersecurity
practices at the date of this report, with discovered security vulnerabilities and issues the details of which are disclosed in this report

(Source Code); the Source Code compilation, deployment, and functionality (performing the intended functional specifications). The report
contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code

(branch/tag/commit hash) submitted to and reviewed, so it may not be relevant to any other branch. Do not consider this report as a final
and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements. While we have

done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we
recommend proceeding with several independent audits, public bug bounty program and CI/CD process to ensure security and code

quality. English is the original language of the report. The Сonsultant is not responsible for the correctness of the translated versions.

Technical disclaimer

Protocol Level Systems are deployed and executed on hardware and software underlying platforms and platform dependencies
(Operating System, System Libraries, Runtime Virtual Machines, linked libraries, etc.). The platform, programming languages, and other

software related to the Protocol Level System may have vulnerabilities that can lead to security issues and exploits. Thus, Consultant
cannot guarantee the explicit security of the Protocol system in full execution environment stack (hardware, OS, libraries, etc.)


