
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: MetaTime
Date: 12 Nov, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for MetaTime

Approved By Luis Buendia | Senior Solidity SC Auditor at Hacken OÜ

Tags MetaChain

Platform EVM

Language Solidity

Methodology Link

Website https://metatime.com/

Changelog 27.10.2023 – Initial Review
12.11.2023 - Remediation Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://metatime.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Findings 7

Critical 7
High 7
Medium 7
Low 7

L01. Lack of parameter validation on Distributor initialization 7
Informational 7

I01. Use Custom Errors 7
I02. Initialized Variable to Default Value 8
I03. Return value on _withdraw function of LiquidityPool contract not used 8
I04. Use two step ownership transfer pattern 9
I05. PoolFactory implementation contracts can be set to zero or incorrect
values leaving the contract non functional 9
I06. Change return value to avoid extra SLOAD 10
I07. lastBurnedAmount of StrategicPool is redundant 10
I08. Consider controlling casting overflow on StrategicPool 10
I09. Missing NatSpec documentation for leftClaimableAmount 11
I10. Owner Can Renounce Itself 11
I11. Centralization Risk 11

Disclaimers 12
Appendix 1. Severity Definitions 13

Risk Levels 13
Impact Levels 14
Likelihood Levels 14
Informational 14

Appendix 2. Scope 15

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by MetaTime (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

MetaTime pools ... The files in the scope:
● Distributor - This contract is designed to facilitate the

distribution of coins over a specified period of time. It allows
users to claim their share of coins based on the distribution rate
and period length.

● LiquidityPool - This contract is a smart contract used for managing a
liquidity pool. It allows the owner to deposit coins into the pool
and withdraw them as needed.

● StrategicPool - This contract is designed for managing a strategic
pool of coins. It allows the owner of the contract to burn coins from
the pool using a formula or without using a formula.

● TokenDistributor - This contract is a Solidity smart contract
designed for distributing coins among users over a specific period of
time. It allows the contract owner to set claimable amounts for users
before the claim period starts and enables users to claim their coins
during the distribution period. Any remaining coins after the claim
period can be swept by the contract owner.

● TokenDistributorWithNoVesting - The TokenDistributorWithNoVesting
contract is designed for distributing coins during no vesting sales.
It allows the contract owner to set claimable amounts for users and
enables users to claim their coins within a specified claim period.
Additionally, any remaining coins can be swept from the contract by
the owner after the claim period ends.

● Trigonometry - Library contract implemented for trigonometry
calculations used in the burn with formula function.

● PoolFactory - Contract that deploys Distributor and TokenDistributor
contracts.

Privileged roles
● The owner of each contract can set and change multiple configuration

values and also access restricted functionalities.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● High level overview documentation has been created.
● Technical descriptions have been provided and NatSpec is extensive.

Code quality
The total Code Quality score is 10 out of 10.

● The code is structured and readable.
● The Gas model is optimized.

Test coverage
Code coverage of the project is 100% (branch coverage)

● Deployment and some basic user interactions are covered with tests.
● The extended code coverage was done after the security review.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

27 October 2023 1 0 0 0

12 November 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The protocol is centralized and depends on a multisignature account
to operate the reviewed contracts. Nevertheless, the MetaTime team
heavily protects these accounts and always operates in the best
interests of their community.

www.hacken.io
6



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01. Lack of parameter validation on Distributor initialization

Impact Low

Likelihood Low

The Distributor contract does not validate the parameters
lastClaimTime, claimableAmount and leftClaimableAmount. Although
these parameters are introduced by the owner, there are several wrong
value combinations that result in unexpected reverts during the
contract execution.

Path: ./contracts/core/Distributor.sol : isParamsValid()

Recommendation: Validate the parameters to avoid arriving at
undesired states. Remove any unused parameters from the modifier.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: 501767f)

Remediation: The fix removed unnecessary validations on the
isParamsValid modifier and added validations on the function
initialize for other required parameters.

Informational

I01. Use Custom Errors

Custom errors from Solidity 0.8.4 are cheaper than revert strings
(cheaper deployment cost and runtime cost when the revert condition
is met). Source Custom Errors in Solidity: Starting from Solidity
v0.8.4, there is a convenient and gas-efficient way to explain to
users why an operation failed through the use of custom errors. Until
now, you could already use strings to give more information about

www.hacken.io
7



failures (e.g., revert(‘‘Insufficient funds.‘‘);), but they are
rather expensive, especially when it comes to deployment cost, and it
is difficult to use dynamic information in them.

Path: ./contracts/core/Distributor.sol

./contracts/core/LiquidityPool.sol

./contracts/core/StrategicPool.sol

./contracts/core/TokenDistributor.sol

./contracts/core/TokenDistributorWithNoVesting.sol

Recommendation: Consider replacing strings for custom errors.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Acknowledged

Remediation: Given the current developed testing framework the
required time to adopt these changes is not acceptable.

I02. Initialized Variable to Default Value

Initializing variables to default value executes an extra order that
is not required.

Path: ./contracts/core/Distributor.sol : calculateClaimableAmount()

./contracts/core/StrategicPool.sol

./contracts/vesting/TokenDistributor.sol

Recommendation: Consider avoiding initializing variables to default
value.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: 501767f)

Remediation: The recommended initialized variables to default values
were removed.

I03. Return value on _withdraw function of LiquidityPool contract not
used

The _withdraw function returns a boolean value that is never used on
the transferFunds function that calls it.

Path: ./contracts/core/prize-pool/StakePrizePoolV2.sol: _liquidate()

Recommendation: Consider using the returned value or removing it if
necessary.

www.hacken.io
8



Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: be33499)

Remediation: The unnecessary return value was removed.

I04. Use two step ownership transfer pattern

The two step ownership transfer pattern ensures a more robust
approach to change the ownership of the contract. The contracts
included on the genesis file do not require this pattern.

Path: ./contracts/core/Distributor.sol

./contracts/core/TokenDistributor.sol

./contracts/core/TokenDistributorWithNoVesting.sol

./contracts/utils/PoolFactory.sol

Recommendation: Consider using the two step ownership transfer
pattern to leverage the security of the relevant contracts.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: 1a3d338)

Remediation: The two step owner transfer was implemented on the
recommended contracts using the Ownable2Step contract from
OpenZeppelin.

I05. PoolFactory implementation contracts can be set to zero or
incorrect values leaving the contract non functional

The initialize function of the PoolFactory contract sets the global
state address variables for the implementation contracts to clone.
However, the initialize function does not perform any validation on
the received input and the contract does not contain any setter
function that allows to change these values if required.

Recommendation: Consider creating a setter for these values or
performing a minimum validation during the initialization function.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: 8e9eb69)

Remediation: The contract validates that the introduced parameters
are not zero.

www.hacken.io
9



I06. Change return value to avoid extra SLOAD

The current implementation of the functions createDistributor and
createTokenDistributor use a global variable twice when it is not
required.

Recommendation: Consider returning the variable and adding the plus
plus sign at the beginning to avoid an extra SLOAD. Ex:

return distributorCount++;

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: 2220e61)

Remediation: The unnecessary code lines were removed.

I07. lastBurnedAmount of StrategicPool is redundant

The global state variable lastBurnedAmount of the StrategicPool
contract is never used and the value is emitted on an event.

Recommendation: Consider removing the variable to save Gas.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: a79f951)

Remediation: The unnecessary global state variable was removed.

I08. Consider controlling casting overflow on StrategicPool

The functions burn and burnWithFormula of the StrategicPool contract
perform cast from unsigned integer to signed integer. Although it is
unlikely to happen, it is possible that the value in that casting
overflows resulting in a negative number.

Recommendation: Consider controlling the values after the casting
before using them.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: a79f951)

Remediation: The casting was controlled using SafeCast library from
OpenZeppelin.

www.hacken.io
10



I09. Missing NatSpec documentation for leftClaimableAmount

The parameter leftClaimableAmount does not contain NatSpec
documentation.

Recommendation: Consider writing the natspec documentation for the
missing variable.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Fixed (Revised commit: 21b9328)

Remediation: The missing NatSpec was added to the contract.

I10. Owner Can Renounce Itself

The owner can renounce itself creating a problem to operate with high
privileged functions.

Recommendation: Consider erasing the renounce owner function.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Mitigated

Remediation: Given the multisignature wallet, it is highly unlikely
to arrive in this scenario.

I11. Centralization Risk

The protocol is heavily centralized. This is not a risk by itself.
However, it is important to notice that any unauthorized access to
the owner accounts can jeopardize the protocol stability.

Recommendation: Use multisignature wallet for privileged accounts or
any additional protection mechanism over the privileged account.

Found in: 692f9732352da63878e983a3be663dffbec39c01

Status: Mitigated

Remediation: The project uses a multisignature wallet and complies
with best security practices.

www.hacken.io
11



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
12



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
13



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
14



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Metatime-Technology-Inc/pool-contracts/

Commit 692f9732352da63878e983a3be663dffbec39c01

Whitepaper https://docs.metatime.com/home/

Requirements N/A

Technical
Requirements N/A

Contracts File: contracts/core/Distributor.sol
SHA3:
f1c2984f0202819d71af11148e0ce158740e4788841517ed90656c1212842cb
3

File: contracts/core/LiquidityPool.sol
SHA3:
18ea7ade67eb6896a64cb39a19765d503b687d5a450564535e38cede2fe9d9a
b

File: contracts/core/StrategicPool.sol
SHA3:
5cd958c4e194c95204b8770ceda6249535e2abde187d255e10ed5ae4847d004
0

File: contracts/core/TokenDistributor.sol
SHA3:
a02cece531848032274c774d684e77f7fbce1d5b6f7e0a2e706071626534db8
7

File: contracts/core/TokenDistributorWithNoVesting.sol
SHA3:
85d0635d7e55b52f7194af17284b3a2bda63b422d4cfa35e05ee9e46626df5b
5

File: contracts/utils/PoolFactory.sol
SHA3:
07f1aca93e2f8fa80a85b9e2dd6f0e72fe1b0f593e48e4674fae1705b3d7c69
e

File: contracts/libs/Trigonometry.sol
SHA3:
260290f6fc7484cbf53b745e7a26b07a32988ef7e5fbd84f7c18ad296cffd3c
f

www.hacken.io
15

https://docs.metatime.com/home/


Remediations review scope

Repository https://github.com/Metatime-Technology-Inc/pool-contracts/

Commit 73fc62c5410f868b6d2c24307be93d2401787221

Whitepaper https://docs.metatime.com/home/

Requirements N/A

Technical
Requirements N/A

Contracts File: contracts/core/Distributor.sol
SHA3:
96a337ad1fd387264dc76294abdf6e7ece0dd4703f61bbb9421a707487ade84
b

File: contracts/core/LiquidityPool.sol
SHA3:
c335c07ae9179f28936b54fe3b43e4a53eaf4f973a86f8ff424bb28c25722a5
b

File: contracts/core/StrategicPool.sol
SHA3:
cdf6e5d2f206d4a36c2762b82f785ffc391e707a01d2459fb41f9cb4bfd0156
7

File: contracts/core/TokenDistributor.sol
SHA3:
29567e9262730e817b1f004a92bbf05a93380b82b7e88bce3f659ddcfab4a05
c

File: contracts/core/TokenDistributorWithNoVesting.sol
SHA3:
7e33a0ce1398547a879d30bbdfa9144aa252c8a712a8402d9ad828916016b3f
f

File: contracts/utils/PoolFactory.sol
SHA3:
69adbeacc741d5c4ad374e90e63400406434e1d5f652a81b9f10f1d2b72bb10
5

File: contracts/libs/Trigonometry.sol
SHA3:
202a89b61c152023b757c1509a0b577cc681177c1e9b1c2f6d1f09756a2ae85
5

www.hacken.io
16

https://docs.metatime.com/home/

