
Smart Contract Code
Review And Security
Analysis Report

Customer: Coinbuck

Date: 22 Dec, 2023

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank Coinbuck for allowing us to conduct a Smart Contract Security

Assessment. This document outlines our methodology, limitations, and results

of the security assessment.

Coinbuck is an ERC�20 token.

Platform: EVM

Language: Solidity

Tags: ERC�20

Timeline: 04.12.2023 - 22.12.2023

Methodology: Link

Last review scope

Repository https://github.com/Coinbuck/Contracts/tree/development

Commit f8ba87

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

9/10
Code quality score

91.67%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

1
Total Findings

1
Resolved

0
Acknowledged

0
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 0 0 0 0

High 0 0 0 0

Medium 1 1 0 0

Low 0 0 0 0

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
Coinbuck

Audited By
Carlo Parisi | SC Lead Auditor at Hacken OÜ
Roman Tiutiun| SC Auditor at Hacken OÜ

Approved By Przemyslaw Swiatowiec | SC Audits Expert at Hacken OÜ

Changelog
08.12.2023 – Preliminary Report
20.12.2023 – Final Report

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope...2
Introduction... 5
System Overview..6
Executive Summary..6
Risks...7
Findings... 8

Critical..8
No critical severity issues were found.. 8
High..8
Medium..8

M01. Unrestricted regain due to deviation from the standard ownership
renouncement process...8

Low... 10
Informational..10

I01. Variable name shadowing issues in buckToken contract functions.....................10
I02. Incomplete blacklisting check in buck.sol contract poses unauthorized fund
reception vulnerability...11
I03. Redundant check for zero address in ownership transfer in Ownable.sol...........11
I04. Missing zero address check in blacklisting functions of buck.sol contract.......... 12

Disclaimers.. 14
Appendix 1. Severity Definitions.. 15

Risk Levels... 16
Impact Levels.. 16
Likelihood Levels...17
Informational..17

Appendix 2. Scope..18

Introduction
Hacken OÜ �Consultant) was contracted by Coinbuck �Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of the Customer's smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

System Overview

Coinbuck is a staking protocol with the following contracts:

● BuckToken — ERC�20 token that mints all initial supply to a

deployer. Additional minting is not allowed.

It has the following attributes:

○ Decimals: 18

○ Total supply: 1B tokens.

Privileged roles

● The owner of the buck.sol contract can arbitrarily add, remove from

a backlist, enable or disable the backlist.

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.

● NatSpec is sufficient.

● Technical description is provided.

Code quality

The total Code Quality score is 9 out of 10.

● The code is well structured.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● Best practice violations �I01, I02, I04�

Test coverage

Code coverage of the project is 91.67% (branch coverage).

Security score

As a result of the audit, the code does not contain any severity issues. The

security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 9.5. The system users should acknowledge all the risks summed up in the

risks section of the report.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risks
● The system exhibits a high degree of centralization, creating a risk of

funds becoming trapped in blacklisted addresses. Additionally, the entire

token supply is minted to the contract deployer, consolidating control and

potentially raising concerns about equitable distribution.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

No critical severity issues were found

High

No high severity issues were found.

Medium

M01. Unrestricted regain due to deviation from the standard ownership
renouncement process.

Impact Medium

Likelihood Medium

The Ownable contract contains a security vulnerability within the

updateOwner() function. Presently, when updateOwner() is invoked, it verifies

whether the message sender, _msgSender(), corresponds to the

_pendingOwner and is a non-zero address.

Consequently, utilizing the updateOwner() function leads to the continual

assignment of the _pendingOwner variable, persisting even after the execution

of the renounceOwnership() function.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

function renounceOwnership() external virtual onlyOwner {

emit OwnershipTransferred(_owner, address(0));

_owner = address(0);

}

function updateOwner() external {

require(_msgSender() == _pendingOwner, "Not pendind owner");

require(

_msgSender() != address(0),

"Ownable: new owner is the zero address"

);

emit OwnershipTransferred(_owner, _pendingOwner);

_owner = _pendingOwner;

}

The identified vulnerability in the Ownable.sol contract presents a significant

security risk. Without resetting the _pendingOwner variable after ownership is

renounced, there exists the potential for unexpected ownership regain. This

deviation from the standard ownership renouncement process may be exploited,

allowing a _pendingOwner to reclaim ownership through subsequent calls to the

updateOwner() function.

Path: ./contracts/Ownable.sol : updateOwner();

Recommendation: It is recommended to reset the _pendingOwner variable to

the zero address after ownership has been successfully transferred or

renounced. This ensures that the pending owner status is cleared, preventing

any further attempts to regain ownership through the updateOwner() function.

The addition of this reset step enhances the security of the ownership

management mechanism in the contract. This deviation from the standard

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

ownership renouncement process may be exploited, allowing the

_pendingOwner to reclaim ownership through calls to the updateOwner()

function.

Found in: 526a9f

Status: Fixed �Revised commit: 3002141�

Remediation: The Ownable library from OpenZeppelin was introduced.

Low

No low severity issues were found.

Informational

I01. Variable name shadowing issues in buckToken contract functions

This issue manifests in the current implementation, where variable names within

a contract's functions overshadow variables of the same name within the

contract scope itself. Such a situation can lead to confusion and unintended

consequences during code execution.

The owner variable in the buck.sol contract is causing shadowing issues with

the owner() function from Ownable.sol. This occurs in functions such as

transfer(), allowance(), approve(), increaseAllowance(), decreaseAllowance(),

_approve(), and _spendAllowance().

Path: ./contracts/buck.sol : owner;

Recommendation: To mitigate the shadowing issue and enhance clarity in the

code, consider renaming the owner variable in the buck.sol contract to a more

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

specific name that does not conflict with the owner() function inherited from

Ownable.sol.

Found in: 526a9f

Status: Acknowledged �Revised commit: 3002141�

I02. Incomplete blacklisting check in buck.sol contract poses unauthorized
fund reception vulnerability

The buck.sol contract utilizes a blacklisted mechanism to prevent transfers from

addresses that are blacklisted in functions such as _transfer() and

transferFrom(). However, there is a vulnerability in the implementation as it fails

to check whether the receiving address to is blacklisted. Consequently, a

blacklisted address could receive funds in a transfer, without facing restrictions.

Path: ./contracts/buckToken.sol : transferFrom(), transfer();

Recommendation: To address this issue, it is recommended to implement a

check on the blacklisted status of the to address in both the _transfer() and

transferFrom() functions. This ensures that blacklisted addresses are prevented

from receiving funds, maintaining the integrity of the blacklisting mechanism

and bolstering the overall security of the token contract. The additional check

can be performed before executing the transfer logic, and if the to address is

blacklisted, the transaction should revert with an appropriate error message.

Found in: 526a9f

Status: Acknowledged �Revised commit: 3002141�

I03. Redundant check for zero address in ownership transfer in Ownable.sol

Within the Ownable.sol contract, there exists a redundancy in the

updateOwner() check. Specifically, the condition require(_msgSender() !�

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

address(0), "Ownable: new owner is the zero address"); is present. However,

this check is superfluous since the message sender _msgSender() can never be

the zero address. Consequently, this condition will never be evaluated to true.

Removing this redundant check can improve code clarity and decrease

transaction Gas cost without compromising the security of the ownership

transfer functionality.

Path: ./contracts/Ownable.sol : updateOwner();

Recommendation: It is recommended to remove the redundant check for the

zero address in the ownership transfer logic.

Found in: 526a9f

Status: Fixed �Revised commit: 3002141�

Remediation: Redundant check for zero address was removed from

updateOwner().

I04. Missing zero address check in blacklisting functions of buck.sol contract

Within the buck.sol contract, specifically in the functions blacklistAddress() and

removeBlacklistedAddress(), there is an oversight in the form of a missing check

for the zero address.

Path: ./contracts/BuckToken.sol : removeBlacklistedAddress(),

blacklistAddress();

Recommendation: It is recommended to add a check to ensure that the

provided user address in the blacklistAddress() and removeBlacklistedAddress()

functions are not the zero address.

Found in: 526a9f

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Status: Acknowledged �Revised commit: 3002141�

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details

Repository https://github.com/Coinbuck/Contracts/tree/development

Commit 526a9f

Contracts in Scope

./contract/token/IERC20Metadata.sol;

./contract/token/IERC20.sol;

./contract/utils/Context.sol;

./contract/access/Ownable.sol;

./contract/buck.sol.sol

Second scope details

Repository https://github.com/Coinbuck/Contracts/tree/development

Commit 3002141

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Contracts in Second Scope

./contract/buck.sol.sol

Thidr scope details

Repository https://github.com/Coinbuck/Contracts/tree/development

Commit f8ba87

Contracts in Third Scope

./contract/buck.sol.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

