
NEAR SECURITY
ANALYSIS

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 2 of 18

Intro

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well as

information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another party. Any subsequent publication of this report shall be without

mandatory consent.

Name NEAR

Website https://near.org/

Repository https://github.com/near/nearcore

Commit 1e781bcccfaeb9a4bb9531155193a459257afd8d

Platform L1

Network NEAR

Languages Rust

Methodology Blockchain Protocol and Security Analysis Methodology

Lead Auditor Yaroslav Bratashchuk (y.bratashchuk@hacken.io)

Auditor
Michal Bajor (m.bajor@hacken.io)
Noah Jelich (n.jelich@hacken.io)

Oleksii Haponiuk (o.haponiuk@hacken.io)

Supervisor Bartosz Barwikowski (b.barwikowski@hacken.io)

Approver Luciano Ciattaglia (l.ciattaglia@hacken.io)

Timeline 17.07.2023 - 23.10.2023

https://near.org/
https://github.com/near/nearcore
https://github.com/near/nearcore/commit/1e781bcccfaeb9a4bb9531155193a459257afd8d
https://hackenio.cc/blockchain_methodology
mailto:y.bratashchuk@hacken.io
mailto:m.bajor@hacken.io
mailto:n.jelich@hacken.io
mailto:o.haponiuk@hacken.io
mailto:b.barwikowski@hacken.io
mailto:l.ciattaglia@hacken.io

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 3 of 18

Table of contents

Summary
Documentation quality

Code quality

Architecture quality

Security score

Total score

Findings count and definitions

Scope of the audit
Protocol Audit

Implementation

Protocol Tests

Issues
Singlepass Compiler Vulnerability: Absence of wasm Feature Validation

Inconsistent TrieKey Implementation

Address Broken Links Throughout Codebase

Address Vulnerable, Outdated, and Unmaintained Dependencies

Inherent risk with use of "clamp" function for gas price validation

NearVM runtime crates has inadequate documentation and TODO annotations

Rectification of Documentation Inconsistencies

Test Fixtures And Coverage Analysis

Upgrade Wasmtime Dependency and Adjust for API Changes

Disclaimers
Hacken disclaimer

Technical disclaimer

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 4 of 18

Summary

The Near Protocol, a decentralized application platform designed for scalable and user-friendly apps, has been gaining traction in the

blockchain community. With a focus on usability and scalability, Near provides developers with tools to create efficient decentralized
applications.

At Hacken, we conducted security research on nearcore , revealing findings ranging from informational to low severity.

Our primary focus was on identifying critical vulnerabilities that could potentially lead to a loss of funds or unauthorized minting of tokens,
as well as vulnerabilities that could incapacitate the network or a segment of it.

The logical state of the blockchain in nearcore is split into two components: chain and runtime. These two are the main components in

our scope of research. The chain is responsible for block and chunk production and processing, consensus, and validator selection. The
runtime is responsible for applying transactions to the state.

We ensured block and chunk production and validation logic for safety, liveness, and correctness. Continuous fuzzing for block and chunk
production and serialization didn't yield any issues, only a few false positives and an issue in Arbitrary derivation, which is not part of the

scope of of our research. We manually explored the related codebase and tests to learn how it works. We didn't find a way to produce an
invalid chunk and include it in the block. The chunk creation and distribution logic is well-designed, having undergone many refactors over

the last few years. The use of erasure coding allows only a subset of validators to reconstruct an entire chunk, ensuring data integrity and
availability. After checking how incoming chunks are processed and validated, we didn't find an option to corrupt a chunk that would go

unnoticed.

In our deep dive into chunk production, we focused on transaction validation and processing. It's crucial to ensure the integrity and

accuracy of all related processes. We set up continuous fuzzing for transaction and receipt serialization and also checked related bug
bounty findings. There is one very interesting finding that exposes a vulnerability, enabling a hacker to mint tokens from thin air by

duplicating receipts. This critical issue was promptly fixed the day after the bug submission and is currently being evaluated for a payout,
which is anticipated to be a significant amount, acknowledging the seriousness of the vulnerability. Post-fix, we confirmed that the issue

could no longer be reproduced, ensuring the robustness of our system.

Nearcore has an impressive stateless runtime implementation, but it demands a thorough understanding of its design and the

mechanisms invented for specific scenarios. We like that it's possible to bundle many actions into one transaction, ensuring they all
execute or fail together. As the Near Protocol is a sharded blockchain, it has developed a way to process transactions that go beyond its

signer shard. This area seemed ripe for potential issues, but our investigations found it to be robust. We believe, however, that this area
still requires vigilant attention from developers due to its potential impact on network economics.

Near supports nine different transaction types. The most significant one allows the execution of smart contracts inside the Near VM. Our
approach here involved continuous fuzzing, aiming to identify crashes and subsequently investigate with test code. Most crashes were

false positives, but some highlighted gaps in the singlepass compiler. One particular crash could disrupt the contract compilation process,
but this has been addressed in the current protocol version.

The blockchain state in nearcore adopts an MPT structure, akin to Ethereum's but with unique modifications. While documentation on

this storage approach is sparse, our codebase investigation found its design for recording and committing changes to be sound. We did
identify a minor issue with TrieKey serialization related to data separator inconsistency, but this impacts only code quality, not security.

Documentation quality

Near boasts comprehensive documentation, illuminating the concepts and architecture of the node and protocol. Additionally, the

specifications for all protocol components are of high quality. While we initially found that the runtime crates' documentation was outdated,
this has since been updated. Additionally, the previously identified broken links throughout the codebase and readme files have been

rectified. These improvements have effectively resolved the minor inconsistencies that could have potentially misled readers or
developers.

The total Documentation Quality score is 10 out of 10.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 5 of 18

Code quality

The nearcore is renowned for its high code quality, effectively utilizing the capabilities of the Rust programming language and its

architectural patterns. As part of their ongoing commitment to security and excellence, the project developers have implemented a
significant enhancement in their continuous integration (CI) process. By integrating cargo-audit into their CI system, the Near Protocol

team ensures the enforcement of a "no vulnerable dependency" policy, not just as a one-time fix but as a sustained, long-term change.
This proactive approach continuously safeguards against potential vulnerabilities. Furthermore, the few vulnerable or outdated external

dependencies previously identified have been promptly updated. The Wasmtime dependency has been upgraded to ensure compatibility
with its latest version. Concerning the singlepass compiler's validation process during compilation, a low-severity issue, it's noteworthy that

a separate validation mechanism within near_vm_runner filters out unsupported features before compilation. The initial concerns

regarding the test code quality, specifically adherence to best practices and inconsistent test coverage measurements, particularly for
external tests, have been addressed and are now marked as resolved by the Near Protocol team.

The total Code Quality score is 10 out of 10.

Architecture quality

The architecture of nearcore is commendable. Designed with sharding at its core, it embodies scalability from day one. While no system

is flawless, our comprehensive research did not identify any high-level architectural issues in nearcore .

The architecture quality score is 10 out of 10.

Security score

Our exhaustive research did not unearth any critical security flaws within the audit's scope. However, a few high-severity issues identified
by bug hunters were promptly addressed and rectified. At this project stage, we believe that a bug bounty program is invaluable, often

leading to in-depth, focused investigations.

In conclusion, nearcore is a high-quality blockchain project.

The security score is 10 out of 10.

Total score

Considering all metrics, the total score of the report is 10.0 out of 10.

Findings count and definitions

Severity Findings

Critical 0

High 0

Medium 0

Low 2

Total 2

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 6 of 18

Scope of the audit

Protocol Audit

Accounts

Accounts implementation review

Security vectors analysis (data availability, nonce,..)

Chain

Tx and receipt implementation review (defaults, timestamps, assembly)

Block and chunk production and validation logic review

Bootstrap review (genesis, seed peers)

Mempool review (defaults, timestamps)

Economics and staking model review

Standard attacks review (replay, malleability,...)

Consensus

Consensus implementation review (validation, fork, ...)

Attack scenarios analysis (liveness, finality, eclipse, double spend,...)

Upgrade mechanisms review

Runtime/VM

Runtime implementation review

VM implementation review

Smart contract implementation review

Known VM Vulnerabilities review

Attack scenarios analysis (Gas, race, stack, DoS, state implosion...)

Contract storage implementation review

Light client integration

Light client block validation logic review

Light client execution proof verification logic review

Implementation

Code Quality

Static Code Analysis

Dynamic Code Analysis

Tests coverage

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 7 of 18

Protocol Tests

Node Tests

Environment Setup

Integration tests

Consensus tests

E2E transaction tests

Fuzz Tests

Consensus fuzz tests

Chain fuzz tests

Runtime/VM fuzz tests

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 8 of 18

Issues

Singlepass Compiler Vulnerability: Absence of wasm Feature Validation

The near-vm-compiler-singlepass serves as one of the primary compilers for NearVM. However, a notable gap in its architecture is the

lack of wasm feature validation prior to the actual compilation.

ID NEAR-101

Scope Compiler, VM

Severity LOW

Status Addressed in the issue

Description

The Singlepass compiler currently does not conduct a thorough validation of wasm features before initiating the compilation. This issue is

further compounded by the presence of todo! macros within the ArgumentRegisterAllocator implementation, as seen here.

Consequently, the following snippet of Rust code can disrupt the compilation process:

// both funcref and externref are falling under todo! macro case

let wasm_bytes = wat2wasm(r#"
 (module

 (type $t0 (func (param funcref externref)))

 (import "" "" (func $hello (type $t0)))
)

 "#.as_bytes(),
)?;

let compiler = Singlepass::default();
let mut store = Store::new(compiler);

let module = Module::new(&store, wasm_bytes)?;

This could have been a critical issue. However, a separate validation mechanism within near_vm_runner prevents unsupported features

from reaching the compilation stage. This validation mitigates the risk, but the underlying problem remains unresolved.

Recommendations

To enhance the robustness and reliability of the Singlepass compiler, it is strongly recommended to replace the use of todo! macros with

proper error handling mechanisms. This improvement will not only address the current problem but will also contribute to the overall

stability of the compiler, particularly when dealing with unsupported wasm features.

Inconsistent TrieKey Implementation

ID NEAR-100

Scope Code Quality

Severity LOW

Status Fixed

Description

https://github.com/near/nearcore/issues/10141
https://github.com/near/nearcore/tree/master/runtime/near-vm/compiler-singlepass
https://github.com/near/nearcore/blob/master/runtime/near-vm/compiler-singlepass/src/x64_decl.rs#L238
https://github.com/near/nearcore/blob/master/runtime/near-vm-runner/src/features.rs
https://github.com/near/nearcore/pull/10166/commits/6766fbd0dc6b946df8509fe85178434a03ac358b

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 9 of 18

Within the TrieKey implementation, the structs and their methods for different records such as Account , ContractCode , AccessKey ,

ReceivedData , etc. are defined.

For records containing multiple values (e.g., ReceivedData contains receiver_id and data_id), the values are packed as such:

TrieKey::PendingDataCount { receiver_id, receipt_id } => {

 buf.push(col::PENDING_DATA_COUNT); // Column name
 buf.extend(receiver_id.as_ref().as_bytes()); // First data element

 buf.push(ACCOUNT_DATA_SEPARATOR); // Data separator
 buf.extend(receipt_id.as_ref()); // Second data element

}

However, there is an inconsistency for the AccessKey record, possibly due to a mistake. The column name identifier is used instead of

the ACCOUNT_DATA_SEPARATOR constant. This bug is propagated in further usage.

Here:

TrieKey::AccessKey { account_id, public_key } => {
 col::ACCESS_KEY.len() * 2 + account_id.len() + public_key.len()

}

And here:

TrieKey::AccessKey { account_id, public_key } => {

 buf.push(col::ACCESS_KEY);
 buf.extend(account_id.as_ref().as_bytes());

 buf.push(col::ACCESS_KEY);
 buf.extend(public_key.try_to_vec().unwrap());

}

Due to validation elsewhere in the code and the fact that the ACCOUNT_DATA_SEPARATOR is the same length as the col::ACCESS_KEY , as

well as the fact that code was written around this bug (adding the next_element function which takes the separator as a parameter to

handle the edge case), this does not cause problems or crashes.

However, in order to maintain a high code quality, this issue must be fixed.

Further down the code, there is another inconsistency within the inner tests module. The [test_account_id_from_trie_key]

(https://github.com/hknio/nearcore/blob/audit/core/primitives/src/trie_key.rs#L648) runs only against the first item in

[OK_ACCOUNT_IDS](https://github.com/hknio/nearcore/blob/audit/core/primitives/src/trie_key.rs#L448) :

fn test_account_id_from_trie_key() {

 let account_id = OK_ACCOUNT_IDS[0].parse::<AccountId>().unwrap();
 // ...

}

Recommendation

To address the issue in the TrieKey implementation, the following actions are recommended:

1. Fix AccessKey Record: Correct the usage of the ACCOUNT_DATA_SEPARATOR in the AccessKey record by replacing it with the

appropriate column name identifier (col::ACCESS_KEY).

2. Code Refactoring: Review and refactor the code that relies on the incorrect usage of the ACCOUNT_DATA_SEPARATOR to ensure

consistency and improve code quality.

3. Comprehensive Testing: Enhance the tests in the TrieKey implementation. Specifically, modify the
test_account_id_from_trie_key function to iterate through the entire array of account IDs, similar to other tests. This ensures

comprehensive coverage and accurate validation.

https://github.com/hknio/nearcore/blob/audit/core/primitives/src/trie_key.rs#L112
https://github.com/hknio/nearcore/blob/audit/core/primitives/src/trie_key.rs#L162

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 10 of 18

Address Broken Links Throughout Codebase

ID NEAR-106

Scope Documentation

Status Fixed

Description

Multiple broken URLs have been identified within the project's codebase, documentation, and README files. These need to be reviewed
and corrected to maintain the integrity and accuracy of the project documentation.

An analysis using lychee unveiled broken URLs in 22 locations, detailed below:

./docs/architecture/README.md :

File not found: /workspaces/nearcore/docs/architecture/style.md

./docs/architecture/how/README.md :

404 Error: Nearcore Sync Code Reference

./docs/architecture/how/epoch.md :

DNS Error for http://go/mainnet-genesis

./docs/architecture/gas/estimator.md :

404 Error: QEMU Documentation

./docs/architecture/network.md :

404 Error: Peer Manager Code Reference

404 Error: Actix Documentation

./docs/practices/when_to_use_private_repository.md & ./docs/practices/security_vulnerabilities.md :

404 Error: https://github.com/near/nearcore-private

./docs/practices/testing/README.md :

Multiple 404 Errors, DNS error: Detailed list of broken URLs needs review.

./docs/misc/README.md :

File not found: /workspaces/nearcore/docs/misc/Cargo.toml

./runtime/runtime-params-estimator/README.md :

File not found: /workspaces/nearcore/runtime/runtime-params-estimator/continuous-estimation/README.md

./runtime/near-vm/api/README.md :

404 Error: Wasmer Dylib

404 Error: Wasmer Staticlib

404 Error: Wasmer Universal

https://github.com/near/nearcore/pull/10217
https://github.com/lycheeverse/lychee
https://github.com/near/nearcore/blob/279044f09a7e6e5e3f26db4898af3655dae6eda6/chain/*client/src/sync.rs#L332
http://go/mainnet-genesis
https://qemu.readthedocs.io/en/latest/devel/tcg-plugins.html
https://github.com/near/nearcore/blob/master/chain/network/src/peer_manager.rs#L1285
https://actix.rs/book/actix/sec-2-actor.html
https://github.com/near/nearcore-private
https://github.com/wasmerio/wasmer/tree/master/lib/engine-dylib
https://github.com/wasmerio/wasmer/tree/master/lib/engine-staticlib
https://github.com/wasmerio/wasmer/tree/master/lib/engine-universal

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 11 of 18

./runtime/near-vm/engine-universal/README.md :

404 Error: Wasmer Example Engine Universal

./runtime/near-vm/engine/README.md :

404 Error: Various Wasmer URLs; please verify each link.

./chain/rosetta-rpc/README.md :

404 Error: Contribute to Nearcore

Connection refused: http://localhost:3040/api/spec

./chain/jsonrpc/res/debug.html :

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/sync

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/network_info

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/last_blocks

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/validator

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/chain_n_chunk_info

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/tier1_network_info

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/pages/epoch_info

File not found: /workspaces/nearcore/chain/jsonrpc/res/debug/client_config

./chain/epoch-manager/README.md :

404 Error: Validator Rewards Calculation

./chain/chunks/README.md :

404 Error: Near Nightshade

./tools/debug-ui/README.md :

Connection refused: http://localhost:3000/logviz

./tools/state-viewer/README.md :

404 Error: Near Ops Pull Request

./pytest/tests/mocknet/README.md :

404 Error: Near Ops Repository

./venv/lib/python3.11/site-packages/deepdiff-6.5.0.dist-info/AUTHORS.md :

404 Error: Boba-2 GitHub Profile

./CONTRIBUTING.md :

File not found: /workspaces/nearcore/docs/protocol_upgrade.md

Recommendations

Review & Correct URLs: Each broken URL should be reviewed. Replace those that have moved with their current counterparts, and
for those that no longer exist, decisions should be made on whether to remove or replace them.

https://github.com/wasmerio/wasmer/blob/master/examples/engine_universal.rs
https://docs.near.org/docs/community/contribute/contribute-nearcore
http://localhost:3040/api/spec
https://nomicon.io/Economics/README.html#validator-rewards-calculation
https://near.org/nightshade/
http://localhost:3000/logviz
https://github.com/near/near-ops/pull/591
https://github.com/near/near-ops
https://github.com/boba-2

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 12 of 18

Update Dead Files & Pages: For pages or files that cannot be found, review whether these need to be reintroduced, updated, or if

references to them should be removed from the documentation.

Taking these steps will ensure that the project’s documentation remains robust, accurate, and user-friendly, facilitating smoother

development and collaboration processes.

Address Vulnerable, Outdated, and Unmaintained Dependencies

ID NEAR-107

Scope Dependency Management, Code Quality

Status Fixed

Description

A cargo audit has revealed multiple dependencies that are vulnerable, unmaintained, or outdated. Below is a detailed list:

Vulnerable Dependencies:

Crate: ed25519-dalek (Version: 1.0.1)

RUSTSEC-2022-0093: Vulnerable to double public key signing function oracle attack. Upgrade to version >=2.0.

Crate: h2 (Version: 0.3.13)

RUSTSEC-2023-0034: Resource exhaustion vulnerability may lead to Denial of Service (DoS). Upgrade to version >=0.3.17.

Crate: libsqlite3-sys (Version: 0.24.2)

RUSTSEC-2022-0090: Vulnerable to CVE-2022-35737. Upgrade to version >=0.25.1.

Crate: openssl (Version: 0.10.48)

RUSTSEC-2023-0044: Buffer over-read vulnerability in X509VerifyParamRef::set_host . Upgrade to version >=0.10.55.

Crate: remove_dir_all (Version: 0.5.3)

RUSTSEC-2023-0018: Race condition enabling link following and TOCTOU. Upgrade to version >=0.8.0.

Crate: time (Version: 0.1.44)

RUSTSEC-2020-0071: Potential segfault. Upgrade to version >=0.2.23.

Unmaintained Dependencies:

Crate: ansi_term (Version: 0.12.1)

RUSTSEC-2021-0139: The crate is unmaintained.

Crate: mach (Version: 0.3.2)

RUSTSEC-2020-0168: The crate is unmaintained.

Crate: memmap (Version: 0.7.0)

https://github.com/near/nearcore/pull/10214
https://rustsec.org/advisories/RUSTSEC-2022-0093
https://rustsec.org/advisories/RUSTSEC-2023-0034
https://rustsec.org/advisories/RUSTSEC-2022-0090
https://rustsec.org/advisories/RUSTSEC-2023-0044
https://rustsec.org/advisories/RUSTSEC-2023-0018
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2021-0139
https://rustsec.org/advisories/RUSTSEC-2020-0168

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 13 of 18

RUSTSEC-2020-0077: The crate is unmaintained.

Crate: parity-wasm (Versions: 0.41.0 and 0.42.2)

RUSTSEC-2022-0061: The crate is deprecated and unmaintained.

Crate: serde_cbor (Version: 0.11.2)

RUSTSEC-2021-0127: The crate is unmaintained.

Deprecated or Yanked Dependencies:

Crate: cpufeatures (Version: 0.2.2)

Yanked from crates.io.

Crate: crossbeam-channel (Version: 0.5.4)

Yanked from crates.io.

Crate: ed25519 (Version: 1.5.1)

Yanked from crates.io.

Crate: hermit-abi (Version: 0.3.1)

Yanked from crates.io.

Recommendations

1. Upgrade Dependencies: Act promptly to upgrade the listed dependencies to their recommended versions or to viable alternatives to
mitigate any associated risks.

2. Dependency Maintenance Strategy: Develop and adhere to a maintenance strategy for dependencies to ensure the project utilizes

well-supported and secure libraries.

Addressing these issues proactively will fortify the project's security posture and facilitate smoother, risk-mitigated development going

forward.

Inherent risk with use of "clamp" function for gas price validation

ID NEAR-103

Scope Block Production, Gas Price Management

Status Addressed

Description

The current implementation for gas price validation relies on the built-in clamp function, which is prone to panicking if the condition for

minimum and maximum gas prices fails. While these values are constants as of now, future iterations that allow users to set their own

min/max limits could introduce instability and lead to node crashes.

Recommendations

https://rustsec.org/advisories/RUSTSEC-2020-0077
https://rustsec.org/advisories/RUSTSEC-2022-0061
https://rustsec.org/advisories/RUSTSEC-2021-0127
https://github.com/near/nearcore/blob/1.35.0/core/primitives/src/block.rs#L374
https://doc.rust-lang.org/stable/src/core/cmp.rs.html#835

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 14 of 18

1. Validate Genesis Config Values: To prevent future risks, it's advisable to include initial validation for min/max gas prices in the

genesis config (here). This would catch potential issues before they propagate, enhancing overall network stability.

2. Replace Clamp with Custom Validation Logic: It is advisable to replace the clamp function with custom validation logic that uses

proper error types instead of panicking.

3. Improve Error Handling: Along with replacing clamp, enriching the error-handling mechanism can contribute to better system

resilience and provide more informative feedback to users or administrators when anomalies occur.

NearVM runtime crates has inadequate documentation and TODO annotations

The NearVM runtime crates, which were forked from Wasmer, exhibit a notable lack of proper documentation. It is essential for the
community and the developers to understand the modifications made, and the reasons behind them, especially given the nature and

importance of blockchain-related projects.

ID NEAR-102

Scope Documentation, Runtime Crates

Status Fixed

Description

The integrity and clarity of the NearVM runtime crates are compromised by two primary issues:

1. Lack of Documentation on Changes from Wasmer: There's an absence of explicit documentation highlighting the changes made
after forking from Wasmer. Such documentation is imperative to understand the evolution, divergence, and unique features or

modifications introduced in the NearVM version.

2. Unexplained TODO Annotations: Numerous TODO annotations are scattered throughout the crates. While some TODOs are

generic or benign, others raise significant concern due to their alarming content. A particularly disconcerting comment reads:

// TODO: What in damnation have you done?! – Bannon

Annotations like these suggest that there might be sections of the code that are potentially problematic or deviate significantly from

best practices.

Recommendations

1. Document Changes from Wasmer: Create a comprehensive documentation section that clearly outlines the differences between
NearVM's runtime crates and Wasmer's original codebase. This will help developers, auditors, and users understand the reasons

behind specific decisions and modifications.

2. Review and Address TODO Annotations: Conduct a thorough review of all TODO annotations in the crates. Prioritize those with

alarming or ambiguous content, like the one cited above, and either address the underlying issues or provide more context to explain

the annotations.

3. Establish a Strong Documentation Practice: To maintain clarity and transparency, implement a robust documentation strategy.

Encourage contributors to document significant changes, decisions, and areas of concern. This not only fosters transparency but also
aids in future development, debugging, and audits.

https://github.com/near/nearcore/blob/1.35.0/core/chain-configs/src/genesis_validate.rs#L165
https://github.com/near/nearcore/pull/10167/commits/465707751e502250966ab905477395c9093b0eb9

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 15 of 18

Rectification of Documentation Inconsistencies

ID NEAR-105

Scope Documentation, Tests

Status Fixed

Description

The project's documentation, code comments, and sample commands exhibit various inconsistencies that could mislead readers or
developers working with the project. Addressing these inaccuracies is crucial for maintaining the integrity and clarity of the project's

documentation.

Incorrect URL for Runner Test Results:

The documentation for Testing Practices provides an incorrect link to the testing results. It reads:

Expensive and Python tests are not part of CI and are run by a custom nightly runner. The results of the latest runs are available
here.

However, the accurate URL for test results is https://nayduck.near.org/#/.

Non-Existent Test Target Documentation:

The documentation references a non-existent test target, cross_shard_tx . The Test Hierarchy Section includes a command supposedly

related to this target, but no such target exists in the codebase.

cargo nextest run --package near-client --test cross_shard_tx tests::test_cross_shard_tx --all-features

Misguiding Python Tests Documentation:

The Python test documentation suggests using a plain cargo build command for local test runs. However, this guidance is insufficient as

many tests require specific features to run. The documentation fails to specify which features should be paired with which tests, leading to
potential confusion and misuse.

Recommendations

1. Update Runner Test Results URL: Replace the outdated URL in the Testing Practices documentation with the correct NayDuck
URL.

2. Remove or Correct Invalid Test Target Reference: Either remove the cross_shard_tx reference from the Test Hierarchy Section

or update the documentation to reference a valid test target.

3. Provide Clear Guidance for Python Tests: Revise the Python test documentation to include explicit instructions on which features
should be used with each test, providing developers with clear and accurate guidance for running tests locally.

Test Fixtures And Coverage Analysis

ID NEAR-108

Scope Test Coverage, Code Quality

Status Fixed

https://github.com/near/nearcore/pull/10168
http://nightly.neartest.com/
https://nayduck.near.org/#/
https://near.github.io/nearcore/practices/testing/index.html#tests-hierarchy
https://github.com/near/nearcore/pull/10180

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 16 of 18

Description

The test coverage was measured for Rust based tests using cargo llvm-cov yielding the following:

Function Coverage: 61.56% (11509/18696)

Line Coverage: 71.75% (96446/134413)

Region Coverage: 56.82% (41749/73482).

A detailed analysis is provided with the report.

Furthermore, several flaky or misconfigured tests were found:

FAIL [0.203s] integration-tests tests::client::features::chunk_nodes_cache::compare_node_counts
FAIL [0.187s] near-vm-runner tests::cache::test_wasmer2_artifact_output_stability

SIGABRT [0.429s] near-vm-runner tests::regression_tests::memory_size_alignment_issue
SIGABRT [5.672s] near-vm-runner tests::rs_contract::attach_unspent_gas_but_burn_all_gas

SIGABRT [6.144s] near-vm-runner tests::rs_contract::attach_unspent_gas_but_use_all_gas
SIGABRT [6.081s] near-vm-runner tests::rs_contract::ext_account_balance

SIGABRT [5.254s] near-vm-runner tests::rs_contract::ext_account_id

SIGABRT [5.816s] near-vm-runner tests::rs_contract::ext_attached_deposit
SIGABRT [4.591s] near-vm-runner tests::rs_contract::ext_block_index

SIGABRT [5.373s] near-vm-runner tests::rs_contract::ext_block_timestamp
SIGABRT [4.699s] near-vm-runner tests::rs_contract::ext_predecessor_account_id

SIGABRT [5.225s] near-vm-runner tests::rs_contract::ext_prepaid_gas

Recommendations

1. Improve Test Score: To enhance the quality and reliability of your software, consider setting a specific target for code coverage (e.g.,

80% or higher), and work on creating additional test cases to achieve this goal. Increasing test coverage can help identify and prevent
potential issues, leading to a more robust application..

2. Enable External Test Coverage: To measure coverage for external tests in your Rust project, follow these steps using the cargo-

llvm-cov tool: configure essential environment variables, remove artifacts that may influence coverage results, build Rust binaries,

execute necessary commands, and finally, generate a coverage report in LCOV format. This will provide a comprehensive analysis of
your code's test coverage.

3. Implement llvm-cov Into CI/CD: Incorporating cargo-llvm-cov into your testing process ensures comprehensive coverage

analysis, enabling you to assess the effectiveness of your test suite in identifying potential issues and vulnerabilities in your Rust
codebase.

4. Fix Failing Tests: By fixing these issues, you will enhance the overall reliability of your test suite, leading to more accurate and

dependable test results. This, in turn, will boost your confidence in the software's stability and facilitate more effective development
and quality assurance processes.

Taking these steps in advance will strengthen the project's security stance and enable more seamless, risk-mitigated development in the
future.

Upgrade Wasmtime Dependency and Adjust for API Changes

ID NEAR-104

Scope Dependency Management, Code Quality

Status Fixed

Description

Wasmtime Dependency:

https://github.com/taiki-e/cargo-llvm-cov#get-coverage-of-external-tests
https://github.com/near/nearcore/pull/10189

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 17 of 18

Current version: 4.0.0

Recommended version: 12.0.1

Reasoning: Transitioning to version 12.0.1 will bring Near up to date with the most recent optimizations, bug fixes, and potential
security enhancements from Wasmtime. However, it's noteworthy that version 12.0.1 introduces API changes (since version 6.0.0)

which will necessitate code adjustments.

Recommendations

Upgrade the Wasmtime dependency from version 4.0.0 to 12.0.1. Given the altered API in version 12.0.1, the codebase should be

reviewed and modified accordingly to ensure compatibility. This update will not only keep Near aligned with best development practices
but also ensure the platform leverages the latest offerings from Wasmtime.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 18 of 18

Disclaimers

Hacken disclaimer

The code base provided for audit has been analyzed according to the latest industry code quality, software processes and cybersecurity
practices at the date of this report, with discovered security vulnerabilities and issues the details of which are disclosed in this report

(Source Code); the Source Code compilation, deployment, and functionality (performing the intended functional specifications). The report
contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code

(branch/tag/commit hash) submitted to and reviewed, so it may not be relevant to any other branch. Do not consider this report as a final
and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements. While we have

done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we
recommend proceeding with several independent audits, public bug bounty program and CI/CD process to ensure security and code

quality. English is the original language of the report. The Сonsultant is not responsible for the correctness of the translated versions.

Technical disclaimer

Protocol Level Systems are deployed and executed on hardware and software underlying platforms and platform dependencies
(Operating System, System Libraries, Runtime Virtual Machines, linked libraries, etc.). The platform, programming languages, and other

software related to the Protocol Level System may have vulnerabilities that can lead to security issues and exploits. Thus, Consultant
cannot guarantee the explicit security of the Protocol system in full execution environment stack (hardware, OS, libraries, etc.)

