
RADIX SECURITY
ANALYSIS

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 2 of 12

Intro

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well as

information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another party. Any subsequent publication of this report shall be without

mandatory consent.

Name Radix

Website https://www.radixdlt.com/

Repository https://github.com/radixdlt/radixdlt-scrypto

Commit c1ca596b569720df93bfadb26e4bf7e2a1be6b54

Platform L1

Network Radix

Languages Rust

Methodology Blockchain Protocol and Security Analysis Methodology

Lead Auditor Bartosz Barwikowski (b.barwikowski@hacken.io)

Approver Luciano Ciattaglia (l.ciattaglia@hacken.io)

Timeline 14.08.2023 - 10.11.2023

https://www.radixdlt.com/
https://github.com/radixdlt/radixdlt-scrypto
https://github.com/radixdlt/radixdlt-scrypto/commit/c1ca596b569720df93bfadb26e4bf7e2a1be6b54
https://hackenio.cc/blockchain_methodology
mailto:b.barwikowski@hacken.io
mailto:l.ciattaglia@hacken.io

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 3 of 12

Table of contents

Summary
Documentation quality

Code quality

Architecture quality

Security score

Total score

Findings count and definitions

Scope of the audit
Protocol Audit

Protocol Tests

Issues
Lack of 2nd Resource Address Validation

Overflow in compare_current_time Function

Potential Supply Chain Attack in scrypto Dependency Management

Tests and code coverage

Disclaimers
Hacken disclaimer

Technical disclaimer

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 4 of 12

Summary

Radix is a layer-1 network explicitly designed for DeFi developers, dedicated to eliminating the barriers inhibiting the full potential of DeFi.

It provides a unique smart contract environment centered on asset handling, along with a collection of pre-made and reusable DeFi "lego
bricks". Radix's goal is to cultivate a self-sustaining developer ecosystem with its Developer Royalty System, offering incentives for

developers contributing to the network. By implementing its unique Cerberus consensus algorithm and harnessing parallel processing,
Radix achieves infinite scalability and seamless interoperability between dApps.

The core focus of the audit is the Radix Engine, the main execution component of the Radix layer-1 network. Built on WASM VM, it offers
a specialized environment for running DeFi-centric Scrypto applications. The engine uses well-defined finite state machines (FSMs) to

control tokens and other assets, guaranteeing secure and predictable DeFi transactions. With the introduction of Radix Engine v2, "smart
contract" programmability was brought to the platform through Scrypto, fostering asset-oriented, FSM-based financial assets and dApps

development. In 2023, the engine's WASM interface received a substantial update, providing a more refined low-level WASM API and
improving its Scrypto function export signatures. This revision simplified Scrypto contract execution, aligning with the network's objective

of making DeFi dApp development more efficient and secure.

Scrypto is an asset-focused smart contract language employed within the Radix Engine. It empowers developers to effortlessly create and

engage with assets on the Radix platform, promoting a safer and more practical DeFi dApp development process. Leveraging Scrypto,
developers can concentrate on their business logic, entrusting the Radix Engine with asset management and authorization.

Documentation quality

Radix Engine offers a robust set of developer documentation enriched with illustrative example projects. The source code is meticulously

crafted, self-explanatory, and well-written, considerably easing developers' grasp of its nuances.

The system is complemented with a comprehensive assortment of native blueprints and components. These are well-documented and

straightforward, facilitating a seamless integration experience for developers. Radix Engine has prioritized clarity and user-friendliness in
these critical areas, ensuring developers have the resources they need to excel.

Nevertheless, the low-level VM API is a minor area where Radix's documentation could use further refinement. It's important to note that
this API is seldom accessed by most users and developers. And even when accessed, the intelligently constructed source code generally

provides ample clarity. However, for an all-encompassing documentation suite, a brief elaboration on this segment would add to the
completeness.

While the typical user or developer might not engage with the low-level VM API, ensuring thoroughness in every documentation aspect
amplifies the engine's perceived comprehensiveness. To reach the pinnacle of documentation perfection, Radix should consider a slight

enhancement in this particular section.

The total Documentation Quality score is 10 out of 10.

Code quality

Radix Engine codebase presents a high standard of craftsmanship, boasting well-written, largely self-explanatory code. The project's

structure is well organized, making it relatively straightforward to understand and engage with. It is replete with a variety of tests, including
fuzz tests, and incorporates developer-friendly tools for efficient working and debugging. Furthermore, it adheres to good coding practices

in Rust.

The latest changes implemented a new error-handling mechanism, making many previously critical issues insignificant, which highly

improved project stability.

The total Code Quality score is 10 out of 10.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 5 of 12

Architecture quality

The architecture of the Radix Engine is well-conceived and executed, utilizing a contemporary approach for the VM implementation and
fostering an impressive ecosystem for users and developers alike. This approach has the potential to greatly enhance the process of

"smart contract" development, making it both easier and more secure, even outperforming the Solidity equivalent in user-friendliness.

However, there are a few minor issues that need to be addressed. Currently, the size of packages ("smart contracts") is rather large, and

in many instances, their execution can be relatively slow. These are areas that could be improved to enhance the overall performance and
efficiency of the system. While these issues are certainly noteworthy, they are present in most similar projects and are surmountable, and

with time and consistent development efforts, they should be rectified. This will further solidify the architecture quality of the Radix Engine.

The architecture quality score is 10 out of 10.

Security score

During the second security audit of Radix, one critical issue and two low-severity issues were uncovered. The issues were confirmed and

fixed by the radix team.

The security score is 10 out of 10.

Total score

Considering all metrics, the total score of the report is 10.0 out of 10.

Findings count and definitions

Severity Findings

Critical 1

High 0

Medium 0

Low 2

Total 3

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 6 of 12

Scope of the audit

Protocol Audit

Native blueprints

Account + Access Controller

Resource Manager + Vaults + Buckets + Proofs

Package + Transaction Processor

Consensus Manager + Validator

Authentication

Auth implementation review

Attack scenarios analysis (permission escalation, auth bypass ,...)

Costing and Limit Models

Costing Implementation review

Limits Implementation review

Attack scenarios analysis (liveness, finality, eclipse, double spend, ...)

VM Engine

VM implementatio nreview (instructions, state transition, ...)

Common VM Vulnerabilities review

Attack scenarios analysis (Gas, race conditions, stack, DoS, state implosion, ...)

Protocol Tests

VM Tests

Environment Setup

Fuzz tests

Fuzz Tests

Focused on resource invariants

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 7 of 12

Issues

Lack of 2nd Resource Address Validation

Multiple instances within the resource blueprints allow for interactions between two resources without confirming their identical type. A

prime example is the put function in the fungible vault (resource/blueprints/fungible/fungible_vault.rs), which omits a crucial

check to ensure the Bucket's resource type aligns with the vault's.

ID RDX-100

Scope Native blueprint

Severity CRITICAL

Vulnerability Type Insufficient Verification of Data Authenticity (CWE-345)

Status Fixed

Description

In the implementation of the put function:

pub fn put<Y>(bucket: Bucket, api: &mut Y) -> Result<(), RuntimeError>

where
 Y: ClientApi<RuntimeError>,

{

 Self::assert_not_frozen(VaultFreezeFlags::DEPOSIT, api)?;
 // Drop other bucket

 let other_bucket = drop_fungible_bucket(bucket.0.as_node_id(), api)?;
 let amount = other_bucket.liquid.amount();

 // Put
 Self::internal_put(other_bucket.liquid, api)?;

 Runtime::emit_event(api, events::fungible_vault::DepositEvent { amount })?;
 Ok(())

}

The main issue lies in the absence of a validation step to verify the resource address of the Bucket against the vault's address. This gap
allows for the deposit of Buckets with differing token types into a vault, such as inserting a non-XRD token into an XRD (native radix token)

vault. This vulnerability enables the conversion of one token type to another, potentially leading to unrestricted generation of new XRD
tokens.

This flaw is not limited to the fungible vault; it also affects non-fungible vaults and bucket implementations.

Recommendation

To mitigate such vulnerabilities, it is vital to incorporate stringent validation processes in scenarios where resources interact. These checks

must confirm the identical nature of resource types involved in any transaction or interaction. Furthermore, implementing comprehensive
logging and monitoring mechanisms for such interactions can provide early detection of anomalous activities, enhancing overall system

security and integrity.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 8 of 12

Overflow in compare_current_time Function

The compare_current_time function in the consensus manager exhibits two instances of overflow.

ID RDX-101

Scope Native blueprint

Severity LOW

Vulnerability Type Integer Overflow or Wraparound (CWE-190)

Status Fixed

Description

The compare_current_time function, located in blueprints/consensus_manager/consensus_manager.rs , is implemented as follows:

pub fn put<Y>(bucket: Bucket, api: &mut Y) -> Result<(), RuntimeError>
where

 Y: ClientApi<RuntimeError>,
{

 pub(crate) fn compare_current_time<Y>(

 other_arbitrary_precision_instant: Instant,
 precision: TimePrecision,

 operator: TimeComparisonOperator,
 api: &mut Y,

) -> Result<bool, RuntimeError>
 where

 Y: ClientApi<RuntimeError>,
 {

 match precision {
 TimePrecision::Minute => {

 let other_epoch_minute = Self::milli_to_minute(

 other_arbitrary_precision_instant.seconds_since_unix_epoch * MILLIS_IN_SECOND,
);

 let handle = api.actor_open_field(
 ACTOR_STATE_SELF,

 ConsensusManagerField::ProposerMinuteTimestamp.into(),
 LockFlags::read_only(),

)?;
 let proposer_minute_timestamp = api

 .field_read_typed::<ConsensusManagerProposerMinuteTimestampFieldPayload>(
 handle,

)?

 .into_latest();
 api.field_close(handle)?;

 // convert back to Instant only for comparison operation
 let proposer_instant =

 Self::epoch_minute_to_instant(proposer_minute_timestamp.epoch_minute);
 let other_instant = Self::epoch_minute_to_instant(other_epoch_minute);

 let result = proposer_instant.compare(other_instant, operator);
 Ok(result)

 }
 }

 }

}

The primary issue arises in the expression other_arbitrary_precision_instant.seconds_since_unix_epoch * MILLIS_IN_SECOND ,

which can lead to an overflow with excessively large values (e.g., i64::MAX). Additionally, the milli_to_minute function can trigger a

panic due to the unwrap call when epoch_milli is 1000 times larger than i32::MAX or i32::MIN. The Radix team has implemented a

mechanism to catch panics in native blueprints, which prevents application crashes but causes transactions to fail.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 9 of 12

Recommendation

A thorough validation should be performed to ensure other_arbitrary_precision_instant.seconds_since_unix_epoch is neither

negative nor exceeds i32::MAX. Implementing safeguards against overflow in calculations, such as using checked arithmetic functions

(checked_mul , checked_add , etc.), can prevent such vulnerabilities. Additionally, enhancing error handling in functions like

milli_to_minute to gracefully handle edge cases instead of using unwrap will improve the robustness and security of the system.

Potential Supply Chain Attack in scrypto Dependency Management

The dependency management in scrypto -based packages currently poses a risk for a supply chain attack due to the use of over 100

third-party packages without specified versions.

ID RDX-102

Scope Dependencies

Severity LOW

Vulnerability Type Inclusion of Functionality from Untrusted Control Sphere (CWE-829)

Status Fixed

Description

The primary concern stems from the absence of a cargo.lock file in the project, which is crucial for consistent dependency

management. By default, packages built using scrypto incorporate more than 100 third-party packages. Without version locking, there is

a theoretical risk that any of these dependencies could be compromised with malicious code. Such a compromise might go unnoticed for a

significant period, potentially undermining the security and integrity of the packages developed using this framework.

Recommendation

To address this vulnerability, implementing a cargo.lock file in the project is essential. This file will lock all dependencies to specific,

verified versions, greatly reducing the risk of a supply chain attack. Furthermore, actively monitoring the dependencies for security

updates and known vulnerabilities is crucial. Keeping the dependencies updated and secure requires a proactive approach, including
subscribing to security bulletins and using automated tools for vulnerability scanning. This strategy will ensure the reliability and security of

the dependencies and, by extension, the integrity of the final product.

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 10 of 12

Tests and code coverage

As of commit d16b3ffa65fea417e9c6d01d76456a0b36c060fa the project has a total of 4237 tests. Additionally, the project contains

multiple fuzz target and error injection tests.

The project has the following code coverage:

Module Regions (Covered/Total/%) Functions (Covered/Total/%) Lines (Covered/Total/%)

monkey-tests 437 / 543 / 80.48% 158 / 223 / 70.85% 1526 / 1631 / 93.56%

native-sdk 648 / 834 / 77.70% 124 / 158 / 78.48% 1727 / 2117 / 81.58%

radix-engine-common 31620 / 33027 / 95.74% 2080 / 2578 / 80.68% 10896 / 11908 / 91.50%

radix-engine-derive 106 / 124 / 85.48% 67 / 78 / 85.90% 689 / 709 / 97.18%

radix-engine-interface 5338 / 8962 / 59.56% 1957 / 3080 / 63.54% 4165 / 5578 / 74.67%

radix-engine-macros 108 / 144 / 75.00% 17 / 23 / 73.91% 159 / 214 / 74.30%

radix-engine-profiling 1 / 1 / 100.00% 1 / 1 / 100.00% 3 / 3 / 100.00%

radix-engine-queries 442 / 690 / 64.06% 84 / 135 / 62.22% 759 / 998 / 76.05%

radix-engine-store-interface 120 / 191 / 62.83% 62 / 90 / 68.89% 202 / 254 / 79.53%

radix-engine-stores 1003 / 1338 / 74.96% 390 / 527 / 74.00% 2267 / 2651 / 85.51%

radix-engine 23231 / 31406 / 73.97% 4040 / 5522 / 73.16% 44363 / 50493 / 87.86%

sbor-derive-common 833 / 1006 / 82.80% 121 / 123 / 98.37% 2155 / 2257 / 95.48%

sbor-derive 30 / 48 / 62.50% 20 / 34 / 58.82% 76 / 115 / 66.09%

sbor-tests 6 / 12 / 50.00% 5 / 10 / 50.00% 16 / 32 / 50.00%

sbor 4691 / 6644 / 70.61% 917 / 1185 / 77.38% 8203 / 9641 / 85.08%

scrypto-derive 768 / 1069 / 71.84% 70 / 85 / 82.35% 2474 / 2856 / 86.62%

scrypto-schema 324 / 537 / 60.34% 108 / 148 / 72.97% 190 / 253 / 75.10%

scrypto-test 392 / 585 / 67.01% 156 / 229 / 68.12% 1589 / 2186 / 72.69%

scrypto-unit 497 / 594 / 83.67% 243 / 290 / 83.79% 2897 / 3318 / 87.31%

transaction-scenarios 939 / 1134 / 82.80% 340 / 363 / 93.66% 3407 / 3496 / 97.45%

transaction 55917 / 58282 / 95.94% 1402 / 2549 / 55.00% 8512 / 9772 / 87.11%

utils 37 / 43 / 86.05% 33 / 38 / 86.84% 139 / 152 / 91.45%

The most important part of the project, radix-engine has the following code coverage:

Module Regions (Covered/Total/%) Functions (Covered/Total/%) Lines (Covered/Total/%)

blueprints 10393 / 14316 / 72.60% 1432 / 1994 / 71.82% 19221 / 21524 / 89.30%

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 11 of 12

kernel 1867 / 2498 / 74.74% 409 / 567 / 72.13% 3268 / 3692 / 88.52%

system 6093 / 7860 / 77.52% 1119 / 1476 / 75.81% 12308 / 14055 / 87.57%

track 636 / 770 / 82.60% 151 / 195 / 77.44% 1477 / 1594 / 92.66%

transaction 1176 / 1656 / 71.01% 274 / 391 / 70.08% 2433 / 2837 / 85.76%

utils 182 / 284 / 64.08% 26 / 40 / 65.00% 331 / 517 / 64.02%

vm 2286 / 2903 / 78.75% 496 / 632 / 78.48% 4917 / 5523 / 89.03%

Hacken OÜ

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti

Kesklinna, Estonia

support@hacken.io

Page 12 of 12

Disclaimers

Hacken disclaimer

The code base provided for audit has been analyzed according to the latest industry code quality, software processes and cybersecurity
practices at the date of this report, with discovered security vulnerabilities and issues the details of which are disclosed in this report

(Source Code); the Source Code compilation, deployment, and functionality (performing the intended functional specifications). The report
contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code

(branch/tag/commit hash) submitted to and reviewed, so it may not be relevant to any other branch. Do not consider this report as a final
and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements. While we have

done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we
recommend proceeding with several independent audits, public bug bounty program and CI/CD process to ensure security and code

quality. English is the original language of the report. The Сonsultant is not responsible for the correctness of the translated versions.

Technical disclaimer

Protocol Level Systems are deployed and executed on hardware and software underlying platforms and platform dependencies
(Operating System, System Libraries, Runtime Virtual Machines, linked libraries, etc.). The platform, programming languages, and other

software related to the Protocol Level System may have vulnerabilities that can lead to security issues and exploits. Thus, Consultant
cannot guarantee the explicit security of the Protocol system in full execution environment stack (hardware, OS, libraries, etc.)

