
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: PAID Network (Master Ventures)
Date: 18 December, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for PAID
Network (Master Ventures)

Approved By
Grzegorz Trawiński | Lead Solidity SC Auditor at Hacken OÜ
Seher Saylik | Solidity SC Auditor at Hacken OÜ
Eren Gonen | Solidity SC Auditor at Hacken OÜ

Tags IDO, Vesting

Platform EVM

Language Solidity

Methodology Link

Website https://paidnetwork.com/

Changelog

20.10.2023 – Initial Review
17.11.2023 – Second Review
18.11.2023 – Third Review
28.11.2023 – Fourth Review
15.12.2023 – Fifth Review
18.12.2023 – Sixth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://paidnetwork.com/

Table of contents
Introduction 5
System Overview 5
Executive Summary 7
Risks 8
Findings 9

Critical 9
C01. withdrawPurchasedAmount() Can Be Called Without Emergency Event 9
C02. Insufficient IDO Token Balance Can Lead To Funds Loss 10
C03. Inconsistent Data In withdrawRedundantIDO() Function Locks Protocol
Owner’s Funds 12
C04. Inaccessible Funds Due to Ineffective withdrawRedundantIDOToken()
Function in Emergency Situations 13
C05. withdrawPurchasedAmount() Function Allows Dual Benefits for Users 15

High 17
H01. Inconsistency in Purchase Amount Limitation Base On Allocation 17
H02. Incorrect Implementation of Upgradability Pattern 17
H03. Insufficient balance of IDO Tokens Due to Critical Flaw in
updateTime() Function 18
H04. Funds Lock When vestingFrequency Is Zero 19

Medium 20
M01. Unrestricted Fee Configuration 20
M02. Centralization: Admin Control over TGE Date 21
M03. Mismatch Between Documentation and Implementation of Lockup Duration 22

Low 22
L01. Invalid Allowance Check 22
L02. Missing Zero Address Validation 23
L03. Missing Validation Check 23
L04. Static DOMAIN_SEPARATOR May Lead to Signature Replay Attacks On Forked
Chains. 24
L05. Non Disabled Implementation Contract 24

Informational 25
I01. Usage of OpenZeppelin’s Deprecated Functions 25
I02. Redundant Functions Declaration 25
I03. Redundant Variable Value Assignment 26
I04. Redundant Status Update 26
I05. Redundant Logic in isFailBeforeTGEDate() Function 26
I06. Inefficient Data Storage: Use of Memory Instead of Calldata 27
I07. Unused Variables 27
I08. Inconsistent Use of Pausability in Inherited Contracts 28
I09. Commented Code Parts 28

Disclaimers 30
Appendix 1. Severity Definitions 31

Risk Levels 31
Impact Levels 32
Likelihood Levels 32

www.hacken.io
3

Informational 32
Appendix 2. Scope 33

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by PAID Network (Master Ventures)
(Customer) to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of the
Customer's smart contracts.

System Overview

PAID Network (Master Ventures) is a IDO Vesting protocol with the following
contracts:

● BasePausable — a contract that is used by Vesting and Pool contracts
to handle the pausable feature of the system.

● IgnitionFactory — factory contract to create new pool and vesting
contracts.

● Pool — an IDO token contract that has different vesting stages based
on user types and time periods. It allows users to deposit stable
coins to the contract to participate in vesting.

● PoolStorage — storage contract of Pool that handles storing all the
global variables.

● Vesting — The Vesting contract facilitates the gradual release of
tokens to beneficiaries over time, following a vesting schedule.

● VestingStorage — storage contract of Vesting that handles storing all
the global variables.

● IgnitionList — The IgnitionList contract provides functionality to
verify whether a particular user belongs to a predefined list using
the Merkle proof mechanism.

● Errors — The Errors library provides a set of constant error messages
that can be used to represent various error scenarios.

● PoolLogic — The PoolLogic library provides utilities for handling
various aspects of a token pool, particularly for initial
decentralized offerings (IDOs). This library has a set of functions
that can validate and calculate token-related values.

● VestingLogic — a logic contract that provides functions for
calculating claimable amounts and verifying vesting information based
on specific parameters.

Privileged roles
● The owner of the Pool contract:

○ can fund IDO tokens and start vesting
○ withdraw redundant IDO tokens from the contract
○ withdraw the purchased tokens from the contract

● The owner can revoke a vesting if upon creation such a parameter was
provided. On revoking all vested tokens till the moment are
automatically released to the beneficiary account.

www.hacken.io
5

● The owner of the Vesting contract:
○ Can set the IDO token address with setIDOToken().
○ Can change the funded status with setFundedStatus().
○ Can toggle claimable status with setClaimableStatus().
○ Can set the emergency canceled status with

setEmergencyCancelled().
○ Can update the TGE date with updateTGEDate() to utmost 2 years

later.
○ Can create vesting schedules for users with

createVestingSchedule().
○ Can withdraw redundant IDO tokens with

withdrawRedundantIDOToken().
● The admin of the Pool contract can:

○ set the Merkle proof
○ cancel the pool
○ update the TGE time before it arrives
○ update the Whale Open and Close times and Community Open and

Close times
○ set claimable status and pause token claimings
○ claim token fee
○ claim participation fee

● The owner of the IgnitionFactory can:
○ Change the pool implementation address with

setPoolImplementation()
○ Change the vesting implementation address with

setVestingImplementation()
● The owner of the BasePausable can:

○ Pause the contract with pause()

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

○ Functional requirements are provided.
● Technical description is provided.

○ NatSpecs are provided.
○ Project technical specifications are provided

Code quality
The total Code Quality score is 8 out of 10.

● The development environment is configured.
● Some redundant declarations are found.
● Some possible code improvements were identified (I06, I07, I08).

Test coverage
● The test coverage metric was omitted from the final evaluation score

exceptionally, due to inaccurate values provided by the coverage
tool.

Security score
As a result of the audit, the code does not contain any severity issues.
The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

20 October 2023 4 3 2 2

17 November 2023 0 2 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

18 November 2023 0 0 0 0

28 November 2023 1 0 2 3

15 December 2023 0 0 0 1

18 December 2023 0 0 0 0

Risks

● The administrative role holds the authority to modify the Token
Generation Event (TGE) date, adjust the durations for early and
normal access, and defer the commencement of vesting for at most 2
years, thereby introducing the potential risk of altering critical
project timelines and token release schedules.

● The owner privileged role has the authority to pause claiming earned
IDO tokens for any period of time.

www.hacken.io
8

Findings

Critical

C01. withdrawPurchasedAmount() Can Be Called Without Emergency Event

Impact High

Likelihood High

The withdrawPurchasedAmount() function is intended to be an emergency
function, allowing users to withdraw their deposited tokens in case
of an emergency. However, due to a logic error in the requirement
check, users can execute this function even when there is not an
emergency situation.

The erroneous requirement check is as follows:

require(

(isFailBeforeTGEDate() || !vesting.isEmergencyCancelled()) &&

userInfo.withdrawn == 0,

Errors.NOT_ALLOWED_TO_WITHDRAW_PURCHASED_AMOUNT

);

The !vesting.isEmergencyCancelled() check is inverted due to the ´!´
operator. This means that the function will proceed even if there is
not an emergency situation, which is a direct violation of the
intended requirement.
Also, the withdrawPurchasedAmount() function can be called only once,
as it expects that userInfo’s withdrawn property must be 0.

Users can exploit this vulnerability to:

1. Withdraw Tokens Prematurely: Users can withdraw their deposited
tokens even without an emergency.

2. Claim More Than Allowed: After withdrawing their deposited
tokens using the emergency function, users can still claim IDO
tokens.

3. Misrepresent Deposits: Users can appear to have deposited more
tokens than they actually have by exploiting the logic flaw.

Path: ./contracts/core/Pool.sol: withdrawPurchasedAmount()

Proof of Concept:

Immediate Double Benefit:

1. Users deposit tokens into the contract.
2. Execute the withdrawPurchasedAmount() function and withdraw

their tokens.

www.hacken.io
9

3. After the lockup period is completed,execute the
claimIDOToken() function and claim IDO tokens for the amount
they have already withdrawn.

Incremental Benefit Through Re-deposit:

1. Assuming a max allocation of 1000 tokens and a user has only
500 tokens.

2. The user deposits 500 tokens into the contract.
3. Executes the withdrawPurchasedAmount() function, withdrawing

the 500 tokens.
4. The user then re-deposits the same 500 tokens they just

withdrew.
5. The user's principal in the contract now appears as 1000

tokens, even though they only ever deposited 500.
6. Since the user has already executed withdrawPurchasedAmount(),

they cannot do so again due to the one-time execution check.
7. The user can now claim IDO tokens as if they deposited 1000

tokens, even though they only ever provided 500.

Recommendation: The primary issue stems from the incorrect condition
check in the require statement. The condition should be rectified to
ensure that the withdrawPurchasedAmount() function can only be
executed during genuine emergency situations. Specifically, the
condition !vesting.isEmergencyCancelled() should be corrected to
properly reflect the intended logic.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: ´!´ operator removed from the require assertion.

C02. Insufficient IDO Token Balance Can Lead To Funds Loss

Impact High

Likelihood High

In the fundIDOToken() function, the owner has the authority to
deposit promised funds. Once these tokens are funded, users will be
able to claim the IDO tokens from the contract. Simultaneously, both
the owner and administrators will be able to withdraw purchased
tokens and accumulated fees. However, the variable that is used to
limit total purchasable amount in all rounds, totalRaiseAmount, poses
a potential risk that may lead to users losing their funds. The total
purchased amount can be already exceeded during the Galaxy and Early
access period because in those rounds the required checks are not
implemented.

Moreover, users are able to deposit after the owner funds required
corresponding IDO tokens to the Vesting contract.

Owner has two different options to fund IDO tokens.

www.hacken.io
10

1. Owner executes the fundIDOToken() function by only transferring
the required IDO tokens calculated based on the total purchased
amount.

2. The owner executes the fundIDOToken function by only transferring
the IDO tokens calculated based on the totalRaiseAmount value.

There are 3 main concerns within the explained implementation.

1. If the owner is funding the IDO tokens as taking
purchasedAmound into account, some users will not receive
earned IDO tokens due to insufficient balance. The reason for
that is the pools are still active and users can deposit tokens
after contract funding.
The users are not allowed to withdraw their original deposited
tokens either. The reason for that is the
withdrawPurchasedAmount function cannot be called when the
contract is in a funded state.

2. If the owner is funding the IDO tokens as taking
totalRaiseAmount into account, it might fund less token than
required and some users will not receive their IDO tokens.
Moreover, since the deposits are still active, new-coming users
will increase the IDO token amount required for Vesting.
The users are not allowed to withdraw their original deposited
tokens either. The reason for that is the
withdrawPurchasedAmount() function cannot be called when the
contract is in a funded state.

3. It is stated that the total purchased amount in all rounds
should be restricted to the totalRaiseAmount variable.
However, in Galaxy Whale Access and in Crowdfunding Whale
Access rounds this variable is not considered and not used at
all. Therefore, the total purchased amount can exceed the
planned maximum limited amount that the owner can transfer to
the Vesting contract.

Path: ./contracts/core/Pool.sol: fundIDOToken()

Proof of Concept:

1. Deploy the solution. Configure it that 1 IDO token price is
equal to the 1 purchase token.

2. The owner sets the totalRaiseAmount to 1.000.000 tokens.
3. Whales purchase 1.100.000 tokens in the Galaxy and CrowdFunding

rounds;

Whale A: 300.000
Whale B: 500.000
Whale C: 300.000

4. The system owner funds IDO tokens according to the
totalRaiseAmount value, which is 1.000.000 tokens.

5. Whale D purchases 400.000 tokens.
6. Vesting has started.

www.hacken.io
11

7. Whale A claims for the earned 300.000 IDO tokens.
8. Whale B claims for the earned 500.000 IDO tokens.
9. Whale D can only get 200.000 of their earned 400.000 IDO tokens

due to insufficient balance. Whale D's initially deposited
400.000 purchase tokens are also locked in the contract or
withdrawn by the owner because the emergency withdraw function
cannot be called when the funding is completed and the contract
is in claimable status.

10. Whale C cannot get any IDO tokens or purchased tokens.

Recommendation:

1. For all rounds, implement proper checks that validate if the
total purchased amount is always less or equal to the total
raise amount. The system must update the total purchased amount
cumulatively in all rounds and use that value to check if it is
exceeding the total raise amount.

2. Fund IDO tokens based on the total raise amount, not the total
purchased amount since the deposits are still active after the
funding.

3. Restrict the withdrawRedundantIDOTokens() function to be
callable only when the deposits are completed and the vesting
is started. With that way, it will be ensured that the users
who deposited after the funding will receive their IDO tokens
and the owner cannot access them.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The implemented solution allows either funding the total
raise amount or if the deposits are completed, allows funding
purchased amount. Now, all rounds are checked to ensure the total
purchased amount is not exceeding the total raise amount.

C03. Inconsistent Data In withdrawRedundantIDO() Function Locks
Protocol Owner’s Funds

Impact High

Likelihood High

The function withdrawRedundantIDO() takes Vesting contract’s IDO
balance as a base to calculate the difference between total IDO
amount that can be claimed by users and total funded IDO amount. The
issue arises when the owner first sets claimable status to true for
users to claim their IDO tokens and then withdraws the redundant IDO
tokens left in the contract. When users start withdrawing (claiming)
their IDO tokens, the IDO balance of the Vesting contract will be
decreasing and the calculation presented below will result in locking
the redundant funds in the Vesting contract. Ultimately, assuming
majority of vested tokens are claimed, the function will revert with
arithmetic underflow error.

www.hacken.io
12

redundantAmount =

IERC20(vesting.getIDOToken()).balanceOf(address(vesting)); -

getIDOTokenAmountByOfferedCurrency(purchasedAmount)

Path: ./contracts/core/Pool.sol: withdrawRedundantIDO()

Proof of Concept:

1. User A purchases 10.000 IDO tokens
2. The platform owner funds the Vesting contract with 15.000 IDO

tokens (Vesting contract balance has now 15.000 tokens)
3. The owner enables claiming IDO tokens
4. User A withdraws 10.000 IDO tokens. Now, the new balance of

Vesting contract is 5.000 tokens
5. The owner attempts to withdraw the redundant IDO tokens within

the given calculation above. Observe that withdrawable
redundant amount is equal to 5.000 - 10.000 = -5.000
Since it is a negative value, the transaction reverts due to
arithmetic underflow.

Recommendation: For the given issue two different solutions can be
followed:
1. Rectify the token accounting within the
withdrawRedundantIDOToken() function by adjusting the subtraction to
occur between totalFundedAmount and purchasedAmount. To implement
this, it is necessary to introduce an additional global variable:
totalFundedAmount that keeps track of the funded total amount in the
Vesting contract.

2. Alternatively, establish a mandatory order for function calls,
stipulating that withdrawRedundantIDOToken() must be invoked before
the initiation of the claiming process.

Found in: 9fef7b1

Status: Fixed (Revised commit: 86d5f36)

Remediation: A new implementation that is explained below is
introduced.

1. If the project is canceled, the withdrawRedundantIDOToken
function allows the owner to withdraw the entire IDO balance in
Vesting.

2. For all the other scenarios, the withdrawRedundantIDOToken
function allows the owner to withdraw only the difference
between the total funded amount and the purchased amount.

C04. Inaccessible Funds Due to Ineffective
withdrawRedundantIDOToken() Function in Emergency Situations

Impact High

Likelihood High

www.hacken.io
13

The withdrawRedundantIDOToken() function is designed to allow the
withdrawal of excess IDO tokens from the Vesting contract in specific
situations, such as pool failure or insufficient funding. However, a
scenario reveals that this function becomes inoperative when the pool
is canceled post-TGE, leading to the locking of funds in the Vesting
contract. This issue arises due to the
vesting.setEmergencyCancelled(true) call made during the cancelPool()
operation, which inadvertently restricts the functionality of
withdrawRedundantIDOToken() due to its notEmergencyCancelled()
modifier. This action inadvertently affects the operational status of
the withdrawRedundantIDOToken() function, which is governed by the
notEmergencyCancelled() modifier. The withdrawRedundantIDOToken()
function is designed to check the emergencyCancelled status; if this
status is set to true, as is the case following the execution of
cancelPool(), the contract will automatically revert any attempts to
execute withdrawRedundantIDOToken(). Consequently, this results in
the function becoming restricted and non-operational in situations
where its needed.

modifier notEmergencyCancelled() {

require(

!vesting.isEmergencyCancelled(),

Errors.NOT_ALLOWED_TO_DO_AFTER_EMERGENCY_CANCELLED

);

_;

}

function cancelPool(bool _permanentDelete) external onlyAdmin {

(uint64 _TGEDate, , , ,) = vesting.getVestingInfo();

if (block.timestamp >= _TGEDate) {

require(

block.timestamp <=

(ignitionFactory.getLockupDuration() + _TGEDate),

Errors.NOT_ALLOWED_TO_CANCEL_AFTER_LOCKUP_TIME

);

vesting.setEmergencyCancelled(true);

}

// This should be marked as cancel (paused === cancel)

_pause();

vesting.setClaimableStatus(false);

emit CancelPool(address(this), _permanentDelete);

}

Path: ./contracts/core/Pool.sol: withdrawRedundantIDO(), cancelPool()

www.hacken.io
14

./contracts/core/Vesting.sol: withdrawRedundantIDOToken()

Proof of Concept:

1. Deploy the pool. Configure it that 1 IDO token price is equal to
the 1 purchase token. The owner sets the totalRaiseAmount to
10,000 tokens.

2. Whale A purchases 5,000 tokens in the Galaxy round.
3. The system owner funds IDO tokens according to the

totalRaiseAmount value, which is 10,000 tokens.
4. Forward time to after TGE date.
5. The administrator executes pool.cancelPool()
6. The administrator attempts to execute

pool.withdrawRedundantIDOToken() after an emergency was declared.
Observe that the function does not operate due to the
vesting.notEmergencyCancelled() modifier.Note, that this results
in 10,000 funds being locked inside the Vesting contract.

Recommendation: Remove the notEmergencyCancelled(modifier from the
Vesting’s withdrawRedundantIDOToken() function.

Found in: 9fef7b1

Status: Fixed (Revised commit: 0f8d17d)

Remediation: The Client removed the mentioned modifier from the
withdrawRedundantIDOToken function.

C05. withdrawPurchasedAmount() Function Allows Dual Benefits for
Users

Impact High

Likelihood High

The withdrawPurchasedAmount() function is designed for use when a
project fails, allowing users to withdraw their initially deposited
funds. However, there is a dual benefit scenario in situations where
a user has deposited tokens and the vesting contract is funded by a
collaborator. After the Token Generation Event (TGE) date has passed,
users will be able to claim their vested IDO (Initial DEX Offering)
tokens. The admin has the authority to cancel the pool even after
vesting has started. If users begin to claim their tokens and the
admin decides to cancel the pool and set setClaimableStatus() to a
“False” value. Consequently, users will be no longer able to claim,
as the admin has changed the claim status to “False” and
vesting.claimIDOToken() includes an onlySatisfyClaimCondition()
modifier. So, withdrawPurchasedAmount() function will be activated
and callable by the users. In this case, a user who has claimed IDO
tokens can also withdraw their initial deposited funds from the pool
contract. This scenario allows a user to both claim IDO tokens and
withdraw their purchased token amount.

www.hacken.io
15

function withdrawPurchasedAmount(

address _beneficiary

) external nonReentrant {

PurchaseAmount storage userInfo =

userPurchasedAmount[_msgSender()];

uint principalAmount = userInfo.principal;

uint feeAmount = userInfo.fee;

uint amount = principalAmount + feeAmount;

require(amount > 0, Errors.ZERO_AMOUNT_NOT_VALID);

// @fix: There're 2 ways to withdraw purchased amount: Pool is

closed or Pool is failed at TGE Date

require(

(isFailBeforeTGEDate() || vesting.isEmergencyCancelled()) &&

userInfo.withdrawn == 0,

Errors.NOT_ALLOWED_TO_WITHDRAW_PURCHASED_AMOUNT

);

purchaseToken.safeTransfer(_beneficiary, amount);

userInfo.withdrawn = amount;

emit WithdrawPurchasedAmount(_msgSender(), _beneficiary, amount);

}

Path:./contracts/core/Pool.sol: withdrawPurchasedAmount(),
cancelPool()

./contracts/core/Vesting.sol: claimIDOToken()

Proof of Concept:

1. User A deposits an amount X of tokens in the galaxy round.
2. The admin funds the vesting contract.
3. Forward time to after the TGE Date.
4. The admin sets the setClaimableStatus() to “True”.
5. User A executes vesting.claimIDOToken() and claims an amount Y

of IDO tokens.
6. The admin decides to stop users from claiming IDO tokens and

sets claimable status to false.
7. The admin executes cancelPool() and pauses the contract,

activating emergency mode.
8. With the emergency active, User A is able to call

pool.withdrawPurchasedAmount() and withdraw the total purchased
amount X from the pool contract. As a result, User A not only
claims Y amount of IDO tokens but also withdraws all the
purchased tokens that were paid in the galaxy round.

www.hacken.io
16

Recommendation: Restrict the owner's actions: the owner should not be
able to cancel the project after users start claiming their vested
IDO tokens.

Found in: 9fef7b1

Status: Fixed (Revised commit: 0f8d17d)

Remediation: The user will be able to withdraw their initial amount,
minus the claimed IDO tokens. The withdrawPurchasedAmount() function
has been reconfigured to reflect this change.

High

H01. Inconsistency in Purchase Amount Limitation Base On Allocation

Impact Medium

Likelihood High

The _maxPurchaseBaseOnAllocations variable, which signifies the upper
limit for whale purchases in the galaxy round, presents a potential
discrepancy in the implementation. While the code in the
implementation only checks if the amount is under the limits only for
per transaction, it does not account for the overarching maximum
allowable purchase for the entire galaxy round, as defined by the
mentioned variable. Consequently, there exists a misalignment between
the defined limit for whales in the round and the actual enforcement
of this constraint during transactions. This will result in instances
where the cumulative purchases in the galaxy round exceed the
intended threshold for whale investors.

Path: ./contracts/core/Pool.sol: buyTokenInGalaxyPool()

Proof of Concept:

1. Owner specifies the _maxPurchaseBaseOnAllocations variable as
10.000 tokens.

2. The user who has the whale access buys 10.000 tokens in Galaxy
round.

3. The user repeats the transaction 10 times and purchases 100.000
tokens. The maximum purchase limit based on allocation (10.000)
is exceeded.

Recommendation: Declare a mapping that tracks each whale’s purchased
amount in galaxy round and compare the _maxPurchaseBaseOnAllocations
variable to that to validate that the whale privileged users’
purchases are not exceeding the limit.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

www.hacken.io
17

Remediation: A mapping called whalePurchasedAmount declared to save
and track whales’ purchases in Galaxy Pool.

H02. Incorrect Implementation of Upgradability Pattern

Impact Medium

Likelihood High

The smart contract system appears to be designed for upgradability,
as evidenced by the inheritance from the Initializable contract.
However, the deployment and initialization process is separated into
two distinct transactions, which raises concerns about potential
front-running attacks on the initialize() function. Additionally,
while there are indications of the intention to use the
TransparentProxy pattern as seen in the deployment script
(factory.deploy.ts), this was commented out, suggesting that the
upgradability pattern might not have been correctly implemented.

Front-running Attacks: If the initialize() function can be called by
anyone before the intended initializer, it can lead to unauthorized
control or unintended behavior of the contract.

Broken Upgradability: If the upgradability pattern is not correctly
implemented, it might be impossible to upgrade the contract in the
future without redeploying and migrating state, which can be costly
and complex.

Path: ./contracts/core/IgnitionFactory.sol

Recommendation: Review the upgradability pattern, ensuring that if
TransparentProxy or another proxy pattern is intended to be used, it
is correctly implemented. Ensure that the proxy contract and the
logic contract are correctly linked, and the initialization is done
securely.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The factory contract is now initialized within Proxy in
deployment scripts. Also, contracts inherit from OpenZepplin’s
contracts-upgradeable versions of external libraries.

H03. Insufficient balance of IDO Tokens Due to Critical Flaw in
updateTime() Function

Impact High

Likelihood Medium

In the context of funding IDO tokens, the owner has two distinct
options:

www.hacken.io
18

1.The owner can transfer the totalRaiseAmount at any given time
before TGE date. This flexibility is acceptable as long as it
occurs within a reasonable timeframe, considering that the
total purchased amount cannot surpass the totalRaiseAmount.

2.Alternatively, the owner has the option to transfer only the
purchased amount, subject to the condition that
"block.timestamp > communityCloseTime" is met. This option
assumes that all purchases have ended.

However, a concern arises in the updateTime() function. Here, the
owner has the ability to redefine the community open and close dates.
This action reactivates deposits and may lead to a loss of funds for
some users. The reason being, the contract lacks sufficient IDO
tokens, as the funding was done only considering purchases up to that
time, and there are not enough IDO tokens for the purchases to be
made thereafter.

Path: ./contracts/core/Pool.sol: updateTime()

Proof of Concept:

1. Deploy the Pool with initializing the IDOToken address as zero
address.

2. Owner sets 1 IDO token price to 1 purchase token.
3. CrowdFunding KYC user A purchases 10.000 IDO tokens.
4. Owner funds the contract by transferring IDO tokens based on

the total purchased amount which is 10.000 IDO tokens.
5. Owner sets new community open and close dates by calling the

updateTime() function.
6. Deposits are reactivated now. CrowdFunding KYC user B purchases

10.000 tokens.
7. Time advances to the date Vesting ends. Note that Vesting

contract’s current balance is 10.000 IDO.
8. User B claims their 10.000 tokens. Note that Vesting contract’s

current balance is 0 IDO.
9. User A attempts to claim tokens. Observe that transaction

reverts due to insufficient balance.

Recommendation: It is recommended to revoke the owner’s authority to
modify community open & close times. Alternatively, fund only the
totalRaisedAmount instead of purchasedAmount as a base to calculate
the amount to be funded.

Found in: 9fef7b1

Status: Fixed (Revised commit: 0f8d17d)

Remediation: Now the owner is not allowed to change the community
times if the raise type is private and the contract is funded.

H04. Funds Lock When vestingFrequency Is Zero

Impact High

www.hacken.io
19

Likelihood Medium

The calculateClaimableAmount() function is designed to determine the
current distributable IDO tokens, taking into account various release
intervals and percentages. The TGEPercentage, which represents tokens
available until the Token Generation Event (TGE) date, is allocated
first. The remaining tokens are then distributed incrementally,
contingent on the completion of the TGE and vesting dates, and in
accordance with the vesting frequency.

The owner has the ability to set the vestingFrequency variable to
zero during the contract initialization. Setting it to zero implies
that users can obtain IDO tokens right after the TGE date. However,
due to a mistaken if statement logic in the function, it always
returns “TGEAmount - claimedAmount” resulting in the distribution of
only a portion of the IDO tokens allocated for the TGE duration. The
remaining funds of users will be locked in the contract.

As evident in the code snippet below, even if the condition
'block.timestamp > TGEDate + vestingCliff' is met, the if statement
will always pass because vestingFrequency is always zero. Users will
not be able to claim funds that are separated for the date after TGE.

// In cliff time

if (block.timestamp < TGEDate + vestingCliff || vestingFrequency

== 0) {

return TGEAmount - claimedAmount;

}

Path: ./contracts/logics/VestingLogic.sol: calculateClaimableAmount()

Proof of Concept:

1. Owner deploys the Pool contract and sets the vestingFrequency
as 0 and TGEPercentage as 20%. 1 IDO token is accepted as equal
to 1 purchase token price.

2. User A purchases 10.000 tokens.
3. The owner funds the contract with 10.000 IDO tokens.
4. The owner sets the claimable status to ‘true’.
5. Time advances to the end of the entire Vesting period.
6. User A attempts to claim tokens. Observe that only 2.000 tokens

are claimable (20% of claimable amount).

Recommendation: Remove the condition of “vestingFrequency == 0” from
the if statement. Introduce a new if statement below it that allows
withdrawing the remaining tokens when the TGE date is over if the
vestingFrequency is set to zero.

Found in: 9fef7b1

Status: Fixed (Revised commit: 0f8d17d)

www.hacken.io
20

Remediation: A solution that allows withdrawing all earnings when the
vesting frequency is zero is introduced.

Medium

M01. Unrestricted Fee Configuration

Impact Low

Likelihood High

No restriction on the values of galaxyParticipationFeePercentage and
crowdfundingParticipationFeePercentage, allowing them to be set to
arbitrary and potentially harmful percentages, including 100%. This
oversight poses a severe risk of misuse or exploitation, as it could
lead to excessive fees or unintended financial consequences within
the system.

Path: ./contracts/core/Pool.sol: initialize()

Recommendation: Implement constraints on these percentages to ensure
they remain within reasonable and secure limits, safeguarding the
financial integrity of the application.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The galaxyParticipationFeePercentage and
crowdfundingParticipationFeePercentage variables now have minimum
and maximum value control checks added to the initialize function.

M02. Centralization: Admin Control over TGE Date

Impact Low

Likelihood High

The contract allows the administrative role to modify the Token
Generation Event (TGE) date, adjust early and normal access
durations, and defer vesting commencement. This centralized control
can alter project timelines and token release schedules.

The administrative role has the capability to:

● Modify the TGE date.
● Adjust early and normal access durations.
● Defer the start of vesting.

The ability to indefinitely modify the TGE date can lead to potential
misuse, such as perpetually delaying the TGE and locking users'
funds.

Path: ./contracts/core/Pool.sol: updateTGEDate()
www.hacken.io

21

Recommendation: There should be a maximum limit set for the TGE date.
For instance, the administrative role should not be allowed to set a
TGE date that is more than 1 years from the initial TGE date. This
ensures that while there's flexibility to adjust the TGE date for
genuine reasons, there's also a safeguard against unreasonable
delays.

Found in: 6ff182a

Status: Fixed (Revised commit: 9cd4c55)

Remediation: The following control was added to function:

require(_newTGEDate <= TGEDate +

ignitionFactory.getMaximumTGEDateAdjustment(),

Errors.NOT_ALLOWED_TO_ADJUST_TGE_DATE_TOO_BIG)

According to this control, the admin cannot set a value greater than
TGEDate + ignitionFactory.getMaximumTGEDateAdjustment(). However, the
admin can still execute the function multiple times and bypass the
intended check.

M03. Mismatch Between Documentation and Implementation of Lockup
Duration

Impact Low

Likelihood High

The IgnitionFactory contract's documentation (IgnitionFactory.md) and
NatSpec comments mention a lockup duration of 14 days. However, in
the actual implementation, the LOCKUP_DURATION constant is set to 5
minutes. This discrepancy can lead to confusion and unintended
behavior.

Path: ./contracts/core/IgnitionFactory.sol

Recommendation: Depending on the intended behavior, either update the
LOCKUP_DURATION constant in the contract to reflect a 14-day duration
or update the documentation to accurately describe the 5-minute
lockup period.

Found in: 6ff182a

Status: Fixed (Revised commit: 9cd4c55)

Remediation: The LOCKUP_DURATION is set to 14 days.

Low

L01. Invalid Allowance Check

Impact Low

www.hacken.io
22

Likelihood Medium

Functions to buy tokens validate if the allowance is greater than the
purchase amount without considering the additional fee. Given that
fees are also being collected alongside the purchase amount, this
omission creates an inconsistency in the system. This may cause users
to spend unnecessary Gas as some transactions can revert.

Path: ./contracts/core/Pool.sol: buyTokenInGalaxyPool(),
buyTokenInCrowdfundingPool()

Recommendation: Re-implement the _verifyAllowance function as
followed:

require(allowance >= _purchaseAmount + _fee,

Errors.NOT_ENOUGH_ALLOWANCE);

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The solution implements now require assertion proposed
in the issue's recommendation.

L02. Missing Zero Address Validation

Impact Low

Likelihood Low

The zero address validation check is not implemented for the
following functions:

1. initialize()

Setting one of aforementioned parameters to zero address (0x0)
results in breaking main business flow.

Paths: ./contracts/core/Pool.sol: initialize()

Recommendation: Implement zero address validation for the given
parameters.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: Required zero address checks are provided.

L03. Missing Validation Check

Impact Low

www.hacken.io
23

Likelihood Low

The provided code lacks a check to ensure that
maxPurchaseAmountForKYCUser is greater than
maxPurchaseAmountForNotKYCUser to align with the system's intended
logic.

There is no check if the galaxy pool fee is less than the
crowdfunding pool fee.

Path: ./contracts/core/Pool.sol: initialize()

Recommendation: Implement the proper checks.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The mentioned check was added to the initialize()
function.

L04. Static DOMAIN_SEPARATOR May Lead to Signature Replay Attacks On
Forked Chains.

Impact Medium

Likelihood Low

The Pool contract initializes the DOMAIN_SEPARATOR using the
network's chainID during its initialization. This DOMAIN_SEPARATOR
remains static and does not account for potential post-deployment
chain forks. Consequently, signatures could be replayed across both
versions of the chain, leading to potential security risks.

In the Pool contract:

● Initialization: The domain separator is computed using the
network's chainID during initialization.

● Signature Verification: The _verifyFundAllowanceSignature
function checks if a user has signed the DOMAIN_SEPARATOR.

● Replay Attack: In the event of a chain fork, since the chainID
might change and the DOMAIN_SEPARATOR remains static, an
attacker could reuse signatures to potentially receive user
funds on both chains.

Path: ./contracts/core/Pool.sol: initialize()

Recommendation: Implement a mechanism to detect changes in the
chainID and regenerate the DOMAIN_SEPARATOR accordingly. This ensures
that the DOMAIN_SEPARATOR remains unique even after a chain fork.

Found in: 6ff182a

www.hacken.io
24

Status: Fixed (Revised commit: ce3edb0)

Remediation: Rather than calculating during initialization and
relying on a static DOMAIN_SEPARATOR, the _domainSeparatorV4()
function has been implemented. With the implementation of the
_domainSeparatorV4() function, the DOMAIN_SEPARATOR will now be
recalculated in the event of forks.

L05. Non Disabled Implementation Contract

Impact Medium

Likelihood Low

The upgradeable contracts do not disable initializers in the
constructor, as recommended by the imported OpenZeppelin’s
Initializable contract. This means that anyone can call the
initializer on the implementation contract to set the contract
variables and assign the roles.

Path: ./contracts/core/Pool.sol: initialize()

Recommendation: Build a constructor function in the upgradeable
contracts that calls the disableInitializers() function.

Found in: 9fef7b1

Status: Fixed (Revised commit: 0f8d17d)

Remediation: The disableInitializers() function is implemented.

Informational

I01. Usage of OpenZeppelin’s Deprecated Functions

The BasePausable contract raises a concern by utilizing a deprecated
function from the OpenZeppelin library, specifically the use of
_setUpRole, which is no longer recommended, potentially posing
security and reliability risks. To rectify this, the deprecated
function should be replaced with the recommended _grantRole function.

Path: ./contracts/core/BasePausable.sol: __BasePausable__init()

Recommendation: Use OpenZeppelin’s _grantRole() function.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The _grantRole() function is implemented.

I02. Redundant Functions Declaration

The existing code exhibits redundancy and inefficiency by having
separate functions named _forwardParticipationFee and

www.hacken.io
25

_forwardPurchaseTokenFunds. A more streamlined approach can be
adopted by directly utilizing the safeTransferFrom() function,
consolidating these two functions into a single, more comprehensively
named function, such as purchaseTokenTransfer() or using just
safeTransferFrom(). This enhancement would enhance code simplicity,
reduce duplication, reduce the deployment costs and promote more
efficient maintenance, aligning with best coding practices.

Path: ./contracts/core/Pool.sol: _forwardParticipationFee(),
_forwardPurchaseTokenFunds()

Recommendation: Declare only one function for the same
implementations.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The _forwardParticipationFee and
_forwardPurchaseTokenFunds functions were removed.

I03. Redundant Variable Value Assignment

The claimable variable is declared in the VestingStorage contract as
true and its value is updated as true in the initialize() function of
Vesting contract. Redundant declarations cause spending unnecessary
Gas.

Path: ./contracts/core/Vesting.sol: initialize()

Recommendation: The initialization of the claimable variable in the
Vesting contract's initialize() function should be removed since it
is already initialized in the VestingStorage contract.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: The variable is only initialized in the Vesting
contract.

I04. Redundant Status Update

The fundIDOToken() function in the contract contains logic that
allows the vesting funded status to be updated to true multiple
times. This redundant operation can lead to unnecessary Gas
consumption. In the provided fundIDOToken() function, the external
call vesting.setFundedStatus(true) sets the vesting funded status to
true. However, there is no check to determine if the status is
already true before making this update. If the function is called
multiple times, the status will be overridden with the same value,
leading to wastage of Gas.

Path: ./contracts/core/Pool.sol: fundIDOToken()
www.hacken.io

26

Recommendation: Before updating the vesting funded status, check if
it is already set to true. If it is, skip the update.

Found in: 6ff182a

Status: Fixed (Revised commit: ce3edb0)

Remediation: Within the current function implementation, funding can
be called / executed only once.

I05. Redundant Logic in isFailBeforeTGEDate() Function

The isFailBeforeTGEDate() function in the contract contains logic
that checks if the contract is paused or if the vesting is not funded
by the TGE date. However, it seems that the check for the contract
being funded is redundant. If the contract is not funded by the TGE
date, the project is considered to have failed, and the contract can
be paused using the pause() function.

Path: ./contracts/core/Pool.sol: isFailBeforeTGEDate()

Recommendation: It is advisable to streamline the function by only
checking if the contract is in a paused state. The check for vesting
not being funded by the TGE date should be eliminated.

Found in: 6ff182a

Status: Mitigated (Revised commit: ce3edb0)

Remediation: The Client stated that the intent is the project status
should fail automatically without triggering the pause function.

I06. Inefficient Data Storage: Use of Memory Instead of Calldata

The smart contract uses the memory keyword for function parameters
when calldata would be more gas-efficient. In Ethereum, calldata is a
read-only storage location that holds the function arguments, making
it cheaper in terms of Gas compared to memory.

When a function parameter is marked as memory, it creates a copy of
the input data in a temporary location. This consumes more Gas than
necessary, especially when the data is not modified within the
function. On the other hand, calldata is a special storage location
that is cheaper in terms of Gas because it is read-only and does not
require copying data.

Path: ./contracts/core/Pool.sol: initialize(),
buyTokenInGalaxyPool(), buyTokenInCrowdfundingPool(),
_internalWhaleBuyToken(), _internalNormalUserBuyToken()

./contracts/extensions/IgnitionList.sol: _verifyUser()

Recommendation: It is recommended to mark the data type as calldata
instead of memory.

www.hacken.io
27

Found in: 6ff182a

Status: Reported (Revised commit: ce3edb0)

Remediation: The changes are applied for the Pool contract but it is
skipped for IgnitionList.

I07. Unused Variables

Within the initialize() function of the contract, several variables
are defined and assigned values but are never utilized in any
subsequent logic or operations. This can lead to confusion, increased
Gas costs, and potential inefficiencies.

In the provided initialize() function, the following variables are
declared and assigned values:

● galaxyPoolProportion
● earlyAccessProportion
● maxPurchaseAmountForGalaxyPool

However, post their declaration and assignment, these variables are
not referenced or used in any subsequent operations or logic within
the function or elsewhere in the contract.

Path: ./contracts/core/Pool.sol

Recommendation: If these variables are not required for any future
logic or operations, they should be removed from the contract to save
some Gas.

Found in: 6ff182a

Status: Reported (Revised commit : ce3edb0)

Remediation: The variables galaxyPoolProportion and
earlyAccessProportion are used in the calculation of the
maxPurchaseAmountForEarlyAccess variable, but the
maxPurchaseAmountForGalaxyPool variable is declared and never used.

I08. Inconsistent Use of Pausability in Inherited Contracts

The contracts Vesting.sol, IgnitionFactory.sol, and Pool.sol all
inherit from BasePausable.sol, which provides functionality to pause
the contract. However, only the Pool.sol contract has implemented the
pausability feature. This inconsistency can lead to confusion and
potential misuse of the contracts.

Path: ./contracts/core/Pool.sol,
./contracts/core/IgnitionFactory.sol,
./contracts/core/Vesting.sol

Recommendation: If Vesting.sol and IgnitionFactory.sol are intended
to be pausable, implement the pausability feature in these contracts,

www.hacken.io
28

ensuring that critical functions can be halted in emergencies.
Alternatively, consider changing the inheritance of contracts.

Found in: 6ff182a

Status: Reported (Revised commit: ce3edb0)

Remediation: BasePausable is imported in the IgnitionFactory and
Vesting contracts. However, the pausability features of BasePausable
are not used within these contracts.

I09. Commented Code Parts

Following commented code parts were observed:

1. Pool lines 6, EIP712Upgradeable import

The presence of commented-out code indicates an unfinished
implementation, potentially causing confusion for both developers and
users and decreasing code readability.

Path: ./contracts/core/Pool.sol

Recommendation: Remove commented parts of code.

Found in: 9fef7b1

Status: Fixed (Revised commit: 0f8d17d)

Remediation: The EIP712Upgradeable contract is implemented.

www.hacken.io
29

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
30

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues will not have a significant impact on code execution, do not affect
security score but can affect code quality score.

www.hacken.io
31

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
32

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/PAIDNetwork/ignition-sc-crowdfunding-pool/tree/feat
ure/vesting

Commit 6ff182a5499103feec5c980677be3c5ebe4f4968

Whitepaper Not Provided

Requirements Confidential

Technical
Requirements Confidential

Contracts File: ./contracts/core/BasePausable.sol
SHA3:26c9448ba3944f5afc7ed8838ec707cb460a54ce189673a4571c344201b121cf

File: ./contracts/core/IgnitionFactory.sol
SHA3 b22adf7223498d995404f7ce7e453701c69130d3296b4c439d5164051d2dcda4

File: ./contracts/core/Pool.sol
SHA3:c005d0832a53c51e38364f7977365de80246a7c088e706d1b3a433bcba29ceda

File: ./contracts/core/PoolStorage.sol
SHA3:946f2b42e5012b054bed50484b3e108bf04098e0802fcd532b600923e6c924ea

File: ./contracts/core/Vesting.sol
SHA3:687e00c88561c63781fc68efa92b23d767640a21431e06191ead3ccf7f396274

File: ./contracts/core/VestingStorage.sol
SHA3:f843453794d5ac360ebd6191b22885b7f636b5092b5a7cb226bd3cc8b46ffbde

File: ./contracts/logics/PoolLogic.sol
SHA3:7d5eb07b9665366343c82968fffe753095d508fee0fd9231e4edffcbcfa9c52a

File: ./contracts/logics/VestingLogic.sol
SHA3:7fa6fd231ae664df34dcf02b4dd95c8083b62d8c96eea912468be863825bf420

File: ./contracts/extensions/IgnitionList.sol
SHA3:ce1fc6d5a784d80fa1562676a5a103be3ef07afe057d5214b70bb38c32ff08e5

File: ./contracts/helpers/Errors.sol
SHA3:ce1fc6d5a784d80fa1562676a5a103be3ef07afe057d5214b70bb38c32ff08e5

File: ./contracts/interfaces/IERC20withDec.sol
SHA3:59472cc1bef4439b0f2ca755758b92f08b6525dd0692d7b75f57903bb79d26df

File: ./contracts/interfaces/IIgnitionFactory.sol
SHA3:1bc06a539876c49fe5028545f69ded70880eb54be7c4b1adc52dbdc02c576809

File: ./contracts/interfaces/IPool.sol
SHA3:a996182800b3bb717525a5566bdbe6856375fce891b5a4a3a69440618e4a0cb2

File: ./contracts/interfaces/IVesting.sol
SHA3:77d65e2ff7c1525d7c60c6abd82b2eecbd3010dc6202a1bbfc81c23ada93942d

www.hacken.io
33

Second review scope

Repository https://github.com/PAIDNetwork/ignition-sc-crowdfunding-pool/tree/feat
ure/vesting

Commit ce3edb03e4c0752461f0d01edee69ba97a624874

Whitepaper Not Provided

Requirements Confidential

Technical
Requirements Confidential

Contracts File: ./contracts/core/BasePausable.sol
SHA3:06507c61af922c83474d0819e7ebcbe8810c8697a563e3af6123b66b361b5891

File: ./contracts/core/IgnitionFactory.sol
SHA3 cc3123b821ed7c4996d81e43c8b1bb1abc2e123c1f95a88e4c5b738707e50e0b

File: ./contracts/core/Pool.sol
SHA3:4a85c835832d8cb06a00161e666974c08e26c787f4712899ec0a35bfa04cc507

File: ./contracts/core/PoolStorage.sol
SHA3:79266fcad92de4e652f481280e4abdb6b3441f685c573ce5695e3924fba50232

File: ./contracts/core/Vesting.sol
SHA3:7c0cdf7c823c3c0a3f4f09869dab3b6f04382dfb338f8f60c76e4938cb311ebe

File: ./contracts/core/VestingStorage.sol
SHA3:92e90bed3663c4da44b87fcb3364c1cf816015b2e70d1ebc71b1806ad24a57cd

File: ./contracts/logics/PoolLogic.sol
SHA3:1fad6b4873d39a4ab5a442ba80399066b5ee69a9af29f3b4219cbf16e964f29e

File: ./contracts/logics/VestingLogic.sol
SHA3:a560fb547dc4794743ae8526a359c0ea69d974cd8b17c84668aae8a3639ca058

File: ./contracts/extensions/IgnitionList.sol
SHA3:6c23eee2f4836e546a9bbf183cc966259f9a6f4c6c8796423f41d10defea16fd

File: ./contracts/helpers/Errors.sol
SHA3:c273e13a3629b2596f3e4a5ffd7511b8282fc9448ae61065c6435f29f654e481

File: ./contracts/interfaces/IERC20withDec.sol
SHA3:dd9778bc430745ef260584cbb89865e6584ef7f29c694ae02e23573efbce53d3

File: ./contracts/interfaces/IIgnitionFactory.sol
SHA3:f7fd8a0c1df3ac637a15a2f705321d9c17508d9c3bd508911b5a51e31ccc001e

File: ./contracts/interfaces/IPool.sol
SHA3:cf828ee31941fe9704f55396cfa408519f78a08c5e9dbeb1d7685b6e75786e23

File: ./contracts/interfaces/IVesting.sol
SHA3:3b343bd80636a95a1db7042fe815368f913d37836fd913d8f5af43bf8b000f95

Third review scope

Repository https://github.com/PAIDNetwork/ignition-sc-crowdfunding-pool/tree/feat
ure/vesting

www.hacken.io
34

Commit 9cd4c55a3d2d3fb406f9c1021ba047ed4fa55a12

Whitepaper Not Provided

Requirements Confidential

Technical
Requirements Confidential

Contracts File: ./contracts/core/BasePausable.sol
SHA3:06507c61af922c83474d0819e7ebcbe8810c8697a563e3af6123b66b361b5891

File: ./contracts/core/IgnitionFactory.sol
SHA3 5635284d559207e4054f1a87572818e7399f997ac4036118528c25121dc927f8

File: ./contracts/core/Pool.sol
SHA3:e1a71c38188ef89671cd9e0ae3deba970949fed56a3552c9312d9aa630c7b7fd

File: ./contracts/core/PoolStorage.sol
SHA3:7b7701a8a23c41e414f05804642b19a1fd4da7c1aef5e4c3991c037ba3d7182f

File: ./contracts/core/Vesting.sol
SHA3:3178873b96d77ca4a7f0490d76ec99e7ec30bec61d0c29e84539797f44cd35ed

File: ./contracts/core/VestingStorage.sol
SHA3:cdd6f59ebf5b559098522484653864e9085617cbde0d885153ae04864a800897

File: ./contracts/logics/PoolLogic.sol
SHA3:1fad6b4873d39a4ab5a442ba80399066b5ee69a9af29f3b4219cbf16e964f29e

File: ./contracts/logics/VestingLogic.sol
SHA3:a560fb547dc4794743ae8526a359c0ea69d974cd8b17c84668aae8a3639ca058

File: ./contracts/extensions/IgnitionList.sol
SHA3:6c23eee2f4836e546a9bbf183cc966259f9a6f4c6c8796423f41d10defea16fd

File: ./contracts/helpers/Errors.sol
SHA3:c273e13a3629b2596f3e4a5ffd7511b8282fc9448ae61065c6435f29f654e481

File: ./contracts/interfaces/IERC20withDec.sol
SHA3:dd9778bc430745ef260584cbb89865e6584ef7f29c694ae02e23573efbce53d3

File: ./contracts/interfaces/IIgnitionFactory.sol
SHA3:46f57cec10ef9cb2779f9044789168e79cb1c4380fe476e5f476b82051a24516

File: ./contracts/interfaces/IPool.sol
SHA3:cf828ee31941fe9704f55396cfa408519f78a08c5e9dbeb1d7685b6e75786e23

File: ./contracts/interfaces/IVesting.sol
SHA3:78f389b8ba1cffa2382485526520fe93a06c810d78a83e89cea9b196dd4e267e

Fourth review scope

Repository https://github.com/PAIDNetwork/ignition-sc-crowdfunding-pool/tree/feat
ure/vesting

Commit 9fef7b1e85522077c9325dbfc5bc6f235f77b26e

www.hacken.io
35

Whitepaper Not Provided

Requirements Confidential

Technical
Requirements Confidential

Contracts File: ./contracts/core/BasePausable.sol
SHA3:06507c61af922c83474d0819e7ebcbe8810c8697a563e3af6123b66b361b5891

File: ./contracts/core/IgnitionFactory.sol
SHA3 5635284d559207e4054f1a87572818e7399f997ac4036118528c25121dc927f8

File: ./contracts/core/Pool.sol
SHA3:e1a71c38188ef89671cd9e0ae3deba970949fed56a3552c9312d9aa630c7b7fd

File: ./contracts/core/PoolStorage.sol
SHA3:7b7701a8a23c41e414f05804642b19a1fd4da7c1aef5e4c3991c037ba3d7182f

File: ./contracts/core/Vesting.sol
SHA3:3178873b96d77ca4a7f0490d76ec99e7ec30bec61d0c29e84539797f44cd35ed

File: ./contracts/core/VestingStorage.sol
SHA3:cdd6f59ebf5b559098522484653864e9085617cbde0d885153ae04864a800897

File: ./contracts/logics/PoolLogic.sol
SHA3:1fad6b4873d39a4ab5a442ba80399066b5ee69a9af29f3b4219cbf16e964f29e

File: ./contracts/logics/VestingLogic.sol
SHA3:a560fb547dc4794743ae8526a359c0ea69d974cd8b17c84668aae8a3639ca058

File: ./contracts/extensions/IgnitionList.sol
SHA3:6c23eee2f4836e546a9bbf183cc966259f9a6f4c6c8796423f41d10defea16fd

File: ./contracts/helpers/Errors.sol
SHA3:c273e13a3629b2596f3e4a5ffd7511b8282fc9448ae61065c6435f29f654e481

File: ./contracts/interfaces/IERC20withDec.sol
SHA3:dd9778bc430745ef260584cbb89865e6584ef7f29c694ae02e23573efbce53d3

File: ./contracts/interfaces/IIgnitionFactory.sol
SHA3:46f57cec10ef9cb2779f9044789168e79cb1c4380fe476e5f476b82051a24516

File: ./contracts/interfaces/IPool.sol
SHA3:cf828ee31941fe9704f55396cfa408519f78a08c5e9dbeb1d7685b6e75786e23

File: ./contracts/interfaces/IVesting.sol
SHA3:78f389b8ba1cffa2382485526520fe93a06c810d78a83e89cea9b196dd4e267e

Fifth review scope

Repository https://github.com/PAIDNetwork/ignition-sc-crowdfunding-pool/tree/feat
ure/vesting

Commit 0f8d17d12004412e709fdae2dd4a775782f7bce8

Whitepaper Not Provided

Requirements Confidential

www.hacken.io
36

Technical
Requirements Confidential

Contracts File: ./contracts/core/BasePausable.sol
SHA3:2b3e05d456222c6484a45085574d58987eade9533ab3392cf3228282ff015b53

File: ./contracts/core/Base.sol
SHA3:2b3e05d456222c6484a45085574d58987eade9533ab3392cf3228282ff015b53

File: ./contracts/core/IgnitionFactory.sol
SHA3 36ea32126df74dab82b5fd9320ef26bf0b858664234e3933b3877f5279ddadd9

File: ./contracts/core/Pool.sol
SHA3:bb8340679f114991f70fc7a403a36f074a6b69acd10dfef269469785f1c5c9a7

File: ./contracts/core/PoolStorage.sol
SHA3:da7e003d56c3f86e952b47dbc658ae8a143920cf950a0abcbd0440751e01a629

File: ./contracts/core/Vesting.sol
SHA3:a2f0d85a811d9a7d46ad73f0ea7fc2719cc3bba61adbcac649cebe21abdea526

File: ./contracts/core/VestingStorage.sol
SHA3:2a587a36a1505ad8a270d6f3753da2db7e8e0b70c052d23b2cb265c8d35b6721

File: ./contracts/logics/PoolLogic.sol
SHA3:1fad6b4873d39a4ab5a442ba80399066b5ee69a9af29f3b4219cbf16e964f29e

File: ./contracts/logics/VestingLogic.sol
SHA3:8f9f82b58dd60d266c1ba70282f23521d331a7f1c74dfa3e71f265fe9ea70512

File: ./contracts/extensions/IgnitionList.sol
SHA3:c88136a351a35edac06663742ccda077742f8c0e8b7f1dfa80737076cd420a5d

File: ./contracts/helpers/Errors.sol
SHA3:bf954b863431a2f04530650f46ee9638ed1386d32c4613231a73c3d6bf82e396

File: ./contracts/interfaces/IERC20withDec.sol
SHA3:dd9778bc430745ef260584cbb89865e6584ef7f29c694ae02e23573efbce53d3

File: ./contracts/interfaces/IIgnitionFactory.sol
SHA3:46f57cec10ef9cb2779f9044789168e79cb1c4380fe476e5f476b82051a24516

File: ./contracts/interfaces/IPool.sol
SHA3:cf828ee31941fe9704f55396cfa408519f78a08c5e9dbeb1d7685b6e75786e23

File: ./contracts/interfaces/IVesting.sol
SHA3:3a3a5594a6659b2fae60b248ed41b36eedf28361ebcee01aba2fb8a50138e795

Sixth review scope

Repository https://github.com/PAIDNetwork/ignition-sc-crowdfunding-pool/tree/feat
ure/vesting

Commit 86d5f3636d73aa566b465637ec7a078cb73486a7

Whitepaper Not Provided

Requirements Confidential

www.hacken.io
37

Technical
Requirements Confidential

Contracts File: ./contracts/core/BasePausable.sol
SHA3:06507c61af922c83474d0819e7ebcbe8810c8697a563e3af6123b66b361b5891

File: ./contracts/core/Base.sol
SHA3:2b3e05d456222c6484a45085574d58987eade9533ab3392cf3228282ff015b53

File: ./contracts/core/IgnitionFactory.sol
SHA3 36ea32126df74dab82b5fd9320ef26bf0b858664234e3933b3877f5279ddadd9

File: ./contracts/core/Pool.sol
SHA3:e2ba41b5cd0a73e6f4b632c08ebe767755071c833d8e97688f7dfc7eaff974ae

File: ./contracts/core/PoolStorage.sol
SHA3:ec1ea97dc9b157cbd634060c4e3fffd74caf65e3bf8a609f5b5fd2e4665fa529

File: ./contracts/core/Vesting.sol
SHA3:a2f0d85a811d9a7d46ad73f0ea7fc2719cc3bba61adbcac649cebe21abdea526

File: ./contracts/core/VestingStorage.sol
SHA3:2a587a36a1505ad8a270d6f3753da2db7e8e0b70c052d23b2cb265c8d35b6721

File: ./contracts/logics/PoolLogic.sol
SHA3:1fad6b4873d39a4ab5a442ba80399066b5ee69a9af29f3b4219cbf16e964f29e

File: ./contracts/logics/VestingLogic.sol
SHA3:8f9f82b58dd60d266c1ba70282f23521d331a7f1c74dfa3e71f265fe9ea70512

File: ./contracts/extensions/IgnitionList.sol
SHA3:c88136a351a35edac06663742ccda077742f8c0e8b7f1dfa80737076cd420a5d

File: ./contracts/helpers/Errors.sol
SHA3:bf954b863431a2f04530650f46ee9638ed1386d32c4613231a73c3d6bf82e396

File: ./contracts/interfaces/IERC20withDec.sol
SHA3:dd9778bc430745ef260584cbb89865e6584ef7f29c694ae02e23573efbce53d3

File: ./contracts/interfaces/IIgnitionFactory.sol
SHA3:46f57cec10ef9cb2779f9044789168e79cb1c4380fe476e5f476b82051a24516

File: ./contracts/interfaces/IPool.sol
SHA3:cf828ee31941fe9704f55396cfa408519f78a08c5e9dbeb1d7685b6e75786e23

File: ./contracts/interfaces/IVesting.sol
SHA3:3a3a5594a6659b2fae60b248ed41b36eedf28361ebcee01aba2fb8a50138e795

www.hacken.io
38

