
Smart Contract Code
Review And Security
Analysis Report

Customer: Clearpool.finance

Date: 8 Jan, 2024



Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank Clearpool.finance for allowing us to conduct a Smart Contract

Security Assessment. This document outlines our methodology, limitations, and

results of the security assessment.

Clearpool.finance is an efficient Defi credit marketplace (higher lender APR) yet

very liquid (for lenders) product that is highly customizable and can work for

any borrower type.

Platform: EVM

Language: Solidity

Tags: Lending Market

Timeline: 06.12.2023 - 08.01.2024

Methodology: Link

Last review scope

Repository https://github.com/clearpool-finance/open-term-pools

Commit cd0aa788f690bcfa507b9592bfe089ba169ca130

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://github.com/clearpool-finance/open-term-pools
https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

9.5/10
Code quality score

100%
Test coverage

9/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

4
Total Findings

2
Resolved

1
Acknowledged

1
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 0 0 0 0

High 0 1 0 0

Medium 0 0 1 0

Low 0 1 0 1

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
Clearpool.finance

Audited By Carlo Parisi | SC Lead Auditor at Hacken OÜ
Roman Tiutiun | SC Auditor at Hacken OÜ

Approved By Przemyslaw Swiatowiec | SC Audits Expert at Hacken OÜ

Website https://clearpool.finance/

Changelog 22.12.2023 – Preliminary Report
08.01.2024 - Secondary Report

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://clearpool.finance/
https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction................................................................................................................. 6

System Overview........................................................................................................6

Executive Summary....................................................................................................8

Risks.............................................................................................................................9

Findings......................................................................................................................12

Critical...................................................................................................................... 12

High.......................................................................................................................... 12

H01. Severe requirements violation - incorrect implementation of KYC for

borrower............................................................................................................. 12

Medium.................................................................................................................... 14

M01. Incomplete eligibility check in _beforeTokenTransfer function.......... 14

Low...........................................................................................................................15

L01. Undocumented Functionality...................................................................15

L02. Lack of handling for currencies with decimals..................................... 17

Informational............................................................................................................19

I01. Variable name shadowing issues in PoolMaster.sol

contract function..............................................................................................19

I02. Typos in the code..................................................................................... 20

I03. Best practices violations..........................................................................20

I04. Missing event indexes...............................................................................21

I05. Implement lowerlLimit for auction duration in setAuctionDuration

function..............................................................................................................22

I06. Constructor usage _disableInitializers....................................................22

I07. Functions that can be declared external................................................ 23

Disclaimers................................................................................................................24

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions..............................................................................25

Risk Levels.............................................................................................................. 26

Impact Levels..........................................................................................................26

Likelihood Levels.................................................................................................... 27

Informational........................................................................................................... 27

Appendix 2. Scope................................................................................................... 28

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ (Consultant) was contracted by Clearpool.finance (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

presents the findings of the security assessment of the Customer's smart

contracts.

System Overview

Clearpool.finance is a Decentralized Finance ecosystem first-ever

permissionless marketplace for unsecured institutional liquidity with the

following contracts permissionless single-borrower pools enable institutions to

raise short-term capital while providing DeFi lenders access to risk-adjusted

returns based on interest rates derived by market consensus:

● PoolFactory — a smart contract for creating term pools.

● PoolMaster — a flexible lending product that has higher lender

APR, potentially high flexibility for lenders, and can be customized and

used by any borrower type.

● BondNFT — a contract for minting tokens ERC1155 standard.

● Auction — a contract for allowing participants to bid for the pool's

cpTokens (the total debt of the pool).

● UtilsGuard — an abstract contract providing a set of error handling

and utility functions.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● RewardAsset — a library providing a set of functions for managing

and updating data related to reward assets, including their rates,

magnified reward corrections, and withdrawal amounts.

● NFTDescriptor — a library facilitates the generation of URIs for

NFTs based on the provided parameters.

Privileged roles

● The privileged roles of the PoolMaster contract:

○ onlyPoolFactory is able to withdrawReward().

○ onlyBorrower is able to repay the full amount, repay current

period debt and closePool, increase repayment frequency if

pool is active, decrease or increase max capacity, change

minimum deposit amount, change APR.

○ onlyAuction is able to process pool debt claims and process

auction start.

○ onlyGovernor is able to request a repayment, change the

pool protocol fee, change the pool borrower address, set the

reward asset and rating, and set the pool status to Default.

● The privileged roles of the PoolFactory contract:

○ onlyOwner is able to update currency allowance in the

protocol, set the address of the quadReader contract,

update the pool beacon, update treasury address, update

bond beacon, change the grace period, change the penalty

interest value, set the reward asset and rating, and set

auction.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● The privileged roles of the BondNFT contract:

○ onlyMinter is able to mint a new ERC1155 and multiple tokens

and assign it to the specified address, burn a specified

amount of an ERC1155 token.

● The privileged roles of the Auction contract:

○ checkBidder ensures that the caller of a function is neither

the borrower of the specified pool nor blacklisted as a bidder

and can bid on a pool.

○ onlyPoolAddr restricts the execution of a function to only

those calls where the specified address is recognized as a

valid pool by the factory contract. If the address is not a valid

pool, the function call will be reverted.

○ onlyActive ensures that the function can only be called when

the auction associated with the specified pool is still active.

If the auction has ended, the function call will be reverted.

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 9 out of 10.

● Technical documentation is sufficient,

● Functional requirements are mostly provided, however:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

○ The documentation provides an incomplete description of the KYC

process.

Code quality

The total Code Quality score is 9.5 out of 10.

● Best practice violations (I03)

Test coverage

Code coverage of the project is 100% (branch coverage).

Security score

Upon completion of the audit, it was discovered that the code contained 1 high,

1 medium, and 2 low severity issues. All issues, with the exception of the second

low severity issue (L02), were resolved. This led to a final security score of 10

out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 9.8. The system users should acknowledge all the risks summed up in the

risks section of the report.

Risks
● The repository contains dependencies that are out of the audit scope.

Contracts, being composable, introduce the possibility of security risks

associated with out-of-scope elements, and evaluating the security of

these elements is beyond the scope of this audit.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● Contracts can be upgraded after deployment, but these changes must be

approached with caution as they can potentially introduce critical

vulnerabilities.

● The changeProtocolFee() function, responsible for updating the protocol

fee, lacks an upper limit constraint. Without an upper boundary, the

function permits the setting of an excessively high protocol fee,

potentially reaching 100%. This absence of a reasonable upper limit could

lead to unintended consequences and undermine the stability of the

protocol.

● The setAuction() function, designed to update the auction address,

introduces a potential vulnerability. If the auction address is used in

frontends to display available auctions, and a change occurs while there

is an ongoing auction, this situation may introduce inconsistencies in the

displayed information.

● Borrowers and lenders have the option to utilize Permissioned Pools,

which incorporate on-chain Quadrata KYC verification. It should be noted

that the KYC process is required to be used only in Permissioned Pools

and borrowers are able to create pools that do not verify the KYC status

of users. Furthermore, KYC verifications and ratings are implemented as

third-party, off-chain measures. Quadrata protocol, as a 3rd party

provider, is out of the scope of this audit.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

No critical severity issues were found.

High

H01. Severe requirements violation - incorrect implementation of KYC for
borrower

Impact Medium

Likelihood High

The implementation of the system does not adhere to functional requirements.

Clearpool is described in the documentation as follows:

“Borrowers need to onboard the same way as currently on Clearpool (MLA, KYC

+ rating)”.

The vulnerability lies in the fact that the KYC does not check the address of the

borrower for KYC, and it does not explicitly check whether the borrower has

completed the KYC process. This means that the borrower's KYC status is not

verified during the pool creation process.

// LINE 152

if (kycRequired && address(quadrataReader) == address(0)) revert

ActionNotAllowed();

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Also, a changeBorrower() function in PoolMaster.sol contains a potential

documentation violation related to the KYC requirements for borrowers during

the changing of the borrower.

function changeBorrower(

address _newBorrower

) external onlyGovernor nonZeroAddress(_newBorrower) nonSameAddress(borrower,

_newBorrower) {

borrower = _newBorrower;

emit BorrowerChanged(_newBorrower);

}

Borrowers can create pools without passing the KYC implies the unauthorized

pool creation, and changeBorrower() is able to add a new borrower without

performing or checking KYC introduces a risk of unauthorized individuals

opening and borrowing from a pool.

Proof of Concept:

● Deploy contract.

● Invoke createPool() with all valid parameters.

● The Pool can be created without KYC.

● Access the Pool and initiate the changeBorrower() function exclusively

through the onlyGovernor role.

● The onlyGovernor can change a borrower without proper KYC.

Path: ./contracts/PoolMaster.sol: changeBorrower();

./contracts/PoolFactory.sol: createPool();

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: To address this vulnerability, the code should be modified to

explicitly check and ensure that the borrower has completed the KYC process.

This may involve adding additional logic to createPool() and changeBorrower()

functions to validate the borrower's KYC status before allowing the creation of a

new pool and change borrower.

Found in: 3c15738

Status: Fixed (Revised commit: cd0aa78)

Remediation: The KYC status of borrowers is verified in permissioned pools,

where the kycRequired pool variable is set to true.

Medium

M01. Incomplete eligibility check in _beforeTokenTransfer function

Impact Medium

Likelihood Medium

The _beforeTokenTransfer() function within the contract checks the eligibility of

the recipient to using the onlyEligible modifier but neglects to verify the

eligibility of the sender from.

function _beforeTokenTransfer(

address from,

address to,

uint256 amount

) internal override onlyEligible(to) {

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

super._beforeTokenTransfer(from, to, amount);

}

Transactions originating from ineligible senders may not undergo the required

eligibility checks, leading to potential unauthorized transfers.

Path: ./contracts/PoolMaster.sol : _beforeTokenTransfer()

Recommendation: To rectify this vulnerability, it is advisable to enhance the

_beforeTokenTransfer() function to incorporate a comprehensive eligibility check

for both the sender and recipient addresses. This can be achieved by extending

the onlyEligible modifier to contain the sender as well. The modified

implementation ensures that both parties involved in a token transfer meet the

specified eligibility criteria, strengthening the contract against potential

unauthorized transactions.

Found in: 3c15738

Status: Mitigated

Remediation: The previous token owner (token sender, from) is validated on

supply function.

Low

L01. Undocumented Functionality

Impact Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Likelihood Low

Thorough documentation is crucial to facilitate a clear understanding of contract

purpose and provide guidance to interact with the contract accurately while

minimizing the risk of potential vulnerabilities or misuse. To enhance this aspect,

it is recommended to establish comprehensive documentation covering all

non-standard functionalities.

Inside the PoolMaster contract, there are instances of burn(address(this),

'amount') accompanied by the comment /// burn all frozen tokens. However, the

documentation lacks explicit guidance on what is the reason for the presence of

tokens, and what prompts their burning.

// burn all freezed tokens

line 417

_burn(address(this), balanceOf(address(this)));

// burn round freezed tokens

line 435

_burn(address(this), roundInfo.debtAmount);

Also, the absence of documentation detailing the Overdue logic in

PoolMaster.sol. This omission leaves without essential information about the

conditions, and actions associated with the Overdue logic.

Furthermore, the changeNoticePeriod() function lacks detailed explanations in

the documentation regarding the constraints introduced by this change.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

if (_newNoticePeriod > minimumNoticePeriod) revert ActionNotAllowed();

Without comprehensive documentation, users might misunderstand or misuse

functionalities such as the _burn operation, Overdue logic and

changeNoticePeriod().

Path: ./contracts/PoolMaster.sol : changeNoticePeriod(), repayAll(),

processDebtClaim()

Recommendation: Each contract function should have a clear and

comprehensive description that outlines its purpose, inputs, outputs, and

behavior under different conditions. Additionally, any relevant limitations, edge

cases, and potential risks should be documented to guide users in making

informed decisions while interacting with the contract. This is especially

important for contracts with non-standard or complex logic.

Found in: 3c15738

Status: Fixed (Revised commit: f9000d7)

Remediation: NatSpec and in-line comments were added.

L02. Lack of handling for currencies with decimals

Impact Low

Likelihood Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The contract Utils.sol contains functions toWei() and fromWei() designed to

convert between amounts, considering the currency's decimal precision. The

potential issue with the current implementation is that it does not handle

scenarios where the token has more than 18 decimals.

function toWei(uint256 amount_, uint256 decimals) internal pure returns

(uint256) {

return amount_ * 10 ** (18 - decimals);

}

function fromWei(uint256 amount_, uint256 decimals) internal pure returns

(uint256) {

return amount_ / 10 ** (18 - decimals);

}

Using a token with more than 18 decimals in toWei() and fromWe() functions

may result in a reverted transaction due to overflow.

Path: ./contracts/utils/Utils.sol.sol : toWei(), fromWei()

Recommendation: To mitigate the risk of overflow when handling tokens with

more than 18 decimals, it is recommended to include a check before whitelisting

a token.

Found in: 3c15738

Status: Acknowledged

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Informational

I01. Variable name shadowing issues in PoolMaster.sol contract function

This issue manifests in the current implementation, where variable names within

a contract's functions overshadow variables of the same name within the

contract scope itself. Such a situation can lead to confusion and unintended

consequences during code execution.

The symbol variable in the PoolMaster.sol contract is causing shadowing issues

with the symbol() function from the ERC20 standard. This occurs in functions

such as __init().

Path: ./contracts/PoolMaster.sol : __init()

Recommendation: To mitigate the shadowing issue and enhance clarity in the

code, consider renaming the owner variable in the PoolMaster.sol contract to a

more specific name that does not conflict with the symbol() function inherited

from ERC20Upgradeable contract.

Found in: 3c15738

Status: Fixed (Revised commit: f9000d7)

Remediation: The symbol variable was renamed to poolSymbol.

I02. Typos in the code

The provided code segment includes a comment with a typo indicating the

creation of an NFT contract. However, the subsequent line of code is initializing

a bondNFT contract:

/// Creating a new `nft contract` with parameters;

bool success = bondNFT.__init(address(this), '');

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Path: ./contracts/PoolMaster.sol : __init()

Recommendation: Update the comment to accurately reflect that the line of

code initializes a bondNFT contract rather than creating a new one.

Found in: 3c15738

Status: Fixed (Revised commit: f9000d7)

Remediation: Typo was fixed.

I03. Best practices violations

There are multiple occasions where the Checks-Effects-Interactions (CEI)

pattern is broken in supply() and redeem() functions in PoolMaster.sol and bid()

and increaseBid() in Auction.sol.

While each of these functions is explicitly marked as nonReentrant, it's

important to note that adherence to the CEI pattern is a fundamental best

practice in smart contract development aimed at mitigating reentrancy attacks.

The observed divergence from this pattern in the specified functions warrants

attention and consideration for enhanced security measures.

Path: ./contracts/PoolMaster.sol : supply() redeem();

./contracts/Auction.sol.sol : increaseBid() bid()

Recommendation: Consider reordering the operations in functions to follow the

CEI pattern more strictly. Move interactions to the end of the functions, ensuring

that state modifications are completed before interacting. This can help reduce

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

the risk of reentrancy-related vulnerabilities and enhance the overall security of

the smart contract.

Found in: 3c15738

Status: Acknowledged (Revised commit: d3a48dd)

Remediation: The CEI pattern was introduced in supply(), redeem(), and

increaseBid() functions. The pattern was not introduced in bid() function as

according to the team: The requested changes increase the contract size by

adding additional variables to store the previous bidder's address and amount,

also a duplicate if will be required.

I04. Missing event indexes

In Solidity, events play a crucial role in facilitating communication between smart

contracts and external applications. To optimize event searches and enable

more efficient log analysis, developers can leverage indexed parameters within

events in PoolFactory.sol.

Path: ./contracts/PoolFactory.sol : *

Recommendation: Use indexed events to keep track of a smart contract's

activity after it is deployed, which is helpful in reducing overall Gas.

Found in: 3c15738

Status: Fixed (Revised commit: f9000d7)

Remediation: Event indexes were introduced.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I05. Implement lowerlLimit for auction duration in setAuctionDuration
function

The setAuctionDuration function, responsible for updating the auction duration,

should include a lower limit to ensure that the auction duration is reasonable and

not set to an extremely short interval, such as 1 second.

Path: ./contracts/Auction.sol : setAuctionDuration()

Recommendation: Introduce a lower limit check within the setAuctionDuration()

function to prevent setting an unreasonably short auction duration. This limit

ensures that the auction duration remains within a practical range.

Status: Fixed (Revised commit: f9000d7)

Remediation: The lower limit check was implemented.

I06. Constructor usage _disableInitializers

In Auction.sol contract, recommended _disableInitializers() call should be added

to the constructor. This precautionary measure ensures that the initializer is

locked within the context of the logic contract. Consequently, any potential

attacker is prevented from invoking the initializer() function in the logic

contract's state, thereby preventing any attempts to engage in malicious

activities.

Path: ./contracts/Auction.sol : *

Recommendation: Include the _disableInitializers() call in the constructor in the

Auction.sol contract.

Found in: 3c15738

Status: Fixed (Revised commit: f9000d7)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Remediation: The _disableInitializers() call was included in the constructor in the

Auction.sol contract.

I07. Functions that can be declared external

To optimize Gas consumption, it is advisable to designate public functions in the

contract as external in the following functions totalDue(), dueOf(), supply(),

setApprovalForAll(). This practice helps minimize Gas costs.

Path: ./contracts/Auction.sol: totalDue(), dueOf(), supply(),

./contracts/PoolFactory.sol: setApprovalForAll()

Recommendation: Use the external attribute for functions never called from the

contracts. The setApprovalForAll function was removed.

Status: Fixed (Revised commit: f9000d7)

Remediation: The aforementioned functions were declared as external.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details

Repository https://github.com/clearpool-finance/open-term-pools

Commit 3c15738

Requirements Google Docs

Technical
Requirements Google Docs

Contracts in Scope

contracts/Auction.sol
contracts/BondNFT.sol
contracts/PoolFactory.sol
contracts/PoolMaster.sol
contracts/interfaces/IAuction.sol
contracts/interfaces/IBondNFT.sol
contracts/interfaces/IMulticall3.sol
contracts/interfaces/IPoolFactory.sol
contracts/interfaces/IPoolMaster.sol
contracts/kyc/QuadrataReader.sol
contracts/libraries/Decimal.sol
contracts/libraries/NFTDescriptor.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1wDVBrBiV60vHZQuumY8cBEXNvY4gm82KMm7k5enKCjM/edit#heading=h.lbcri5h9h789
https://docs.google.com/document/d/1wDVBrBiV60vHZQuumY8cBEXNvY4gm82KMm7k5enKCjM/edit#heading=h.lbcri5h9h789
https://hacken.io/


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

contracts/libraries/RewardAsset.sol
contracts/utils/Utils.sol

Second scope details

Repository https://github.com/clearpool-finance/open-term-pools

Commit cd0aa788

Requiremens Google Docs

Technical
Requiremens Google Docs

Contracts in Scope

contracts/Auction.sol
contracts/BondNFT.sol
contracts/PoolFactory.sol
contracts/PoolMaster.sol
contracts/interfaces/IAuction.sol
contracts/interfaces/IBondNFT.sol
contracts/interfaces/IMulticall3.sol
contracts/interfaces/IPoolFactory.sol
contracts/interfaces/IPoolMaster.sol
contracts/kyc/QuadrataReader.sol
contracts/libraries/Decimal.sol
contracts/libraries/NFTDescriptor.sol
contracts/libraries/RewardAsset.sol
contracts/utils/Utils.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1wDVBrBiV60vHZQuumY8cBEXNvY4gm82KMm7k5enKCjM/edit#heading=h.lbcri5h9h789
https://docs.google.com/document/d/1wDVBrBiV60vHZQuumY8cBEXNvY4gm82KMm7k5enKCjM/edit#heading=h.lbcri5h9h789
https://hacken.io/

