
Smart Contract Code Review

And Security Analysis Report

Customer: Dogami

Date: 23/01/2024

We express our gratitude to the Dogami team for the collaborative engagement that enabled the execution of this

Smart Contract Security Assessment.

DOGAMÍ is a staking protocol that allow users to lock an ERC20 Token for either a fixed (limited) or open-ended

(unlimited) period and earn rewards in the same ERC20 Token.

Platform: EVM

Language: Solidity

Tags: Staking

Timeline: 16/01/2024 - 23/01/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/dogami-code/Smart-Contracts-EVM

Commit 2276c97

2

https://hackenio.cc/sc_methodology
https://github.com/dogami-code/Smart-Contracts-EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235

Audit Summary

10/10 10/10 97% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.9/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 4 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 4

Vulnerability Status

F-2024-0493 - Missing return value check for tokens transfers may lead to unexpected behavior Fixed

F-2024-0494 - Missing checks for reward ratio numerator and denominator can lead to incorrect reward values Fixed

F-2024-0501 - Missing the timeUnit variable check can lead to division by zero in reward calculations Fixed

F-2024-0502 - Potential misuse of user funds in reward distribution due to incorrect constructor settings Fixed

3

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/0fbe63e4-c645-41fe-93df-dbb60d31d4fd
https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/2491c569-87d8-4a96-9be6-5f9d9252686f
https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/21a0fe53-e168-4286-af49-6d286195a17e
https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/f5472c36-54a2-43b0-a77f-5f143d67d25c

This report may contain confidential information about IT systems and the intellectual property of the Customer, as

well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Dogami

Audited By David Camps Novi

Approved By Przemyslaw Swiatowiec

Website https://dogami.com

Changelog 18/01/2024 - Preliminary Report; 23/01/2024 - Final Report

4

https://dogami.com/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 14

Disclaimers 21

Appendix 1. Severity Definitions 22

Appendix 2. Scope 23

System Overview

DOGAMÍ is a staking protocol that allow users to lock an ERC20 Token for either a fixed (limited) or open-ended

(unlimited) period and earn rewards in the same ERC20 Token.

The StakingFlex contract allows for unlimited staking at a fixed rate, which can be later updated by the

admin wallet if needed.

The StakingLockPeriod contract allows for staking for a pre-defined period at a fixed rate that cannot be

later updated by the admin wallet.

Privileged roles

Both staking contracts have 2 roles:

Admin: Can pause/unpause the contract if needed for both the StakingFlex and StakingLockPeriod

contracts. In addition, for the StakingFlex contract, admin can update the time unit over which the reward is

calculated. The admin can also modify the reward ratio. Can force a user to un-stake their funds.

User: Can stake tokens, collect their rewards, and withdraw parts or the entirety of their stacked tokens.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring

criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

Best practices are followed .

The development environment is configured.

Test coverage

Code coverage of the project is 97% (branch coverage).

Main deployment and basic user interactions are covered with tests.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 4 low severity issues. All issues

were fixed, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.9. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The reward tokens are sent from the rewardWallet address, but the balance of that address is checked off-

chain. It may be the case that a user engages with the system when no rewards are available. Another

possibility is that no rewards can be sent out to a user when the rewards are claimed, reverting the call that

withdraws the tokens and receives the rewards

8

Findings

Vulnerability Details

F-2024-0493 - Missing return value check for tokens transfers may lead to

unexpected behavior - Low

Description: In the safeTransferERC20 functions, both transfer and transferFrom ERC20

functions are called to transfer tokens. However, the function does not check the

return values of these calls.

Not all ERC20 tokens are guaranteed to revert on failure; some may return a

boolean value (false) instead. If the system interacts with such tokens, a failed

transfer would not cause the transaction to revert, potentially leading to

discrepancies in the contract's state.

Other ERC20 do not return anything at all when calling transfer and

transferFrom. Therefore, every call will be reverted when the return value is

checked.

The following functions are affected:

StakingLockPeriod: _safeTransferERC20.

StakingFlex: safeTransferERC20.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 3/5

Recommendations

Recommendation: Check the return value of the calls to ERC20 transfer and transferFrom.

Additionally, implement the SafeERC20 library to interact with safely with tokens that

do not return anything at all.

Remediation (revised commit: 2276c97): The SafeERC20 library was implemented.

9

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/0fbe63e4-c645-41fe-93df-dbb60d31d4fd
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

F-2024-0494 - Missing checks for reward ratio numerator and denominator

can lead to incorrect reward values - Low

Description: The staking contracts use rewardRatioNumerator and

rewardRatioDenominator in order to set the reward tokens obtained from staking

tokens.

Due to the lack of checks that limit their values, the reward ratio could be set to 0%

or higher than 100%, leading to unwanted reward values.

The following parameters are affected:

StakingLockPeriod: constructor → _numerator, _denominator.

StakingFlex: constructor, setRewardRatio, _setStakingCondition →

_numerator, _denominator.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 2/5

Recommendations

Recommendation: Reasonable limits should be added to the variables _numerator and _denominator

to prevent unexpected side effects.

Remediation (revised commit: 2276c97): Checks were implemented to avoid

setting values to 0 or numerator being higher than denominator..

10

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/2491c569-87d8-4a96-9be6-5f9d9252686f

F-2024-0501 - Missing the timeUnit variable check can lead to division by

zero in reward calculations - Low

Description: The parameter _timeUnit is critical for determining the time unit in reward

calculations. It is essential that this parameter is set to a non-zero value to prevent

division by zero errors during the computation of rewards.

A check should be implemented in the following cases:

StakingFlex: constructor, setTimeUnit.

StakingLockPeriod: constructor.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 2/5

Recommendations

Recommendation: Implement a check to make sure _timeUnit is not zero in the reported functions.

Remediation (revised commit: 2276c97): A check was implemented to ensure

_timeUnit is not set to 0.

11

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/21a0fe53-e168-4286-af49-6d286195a17e

F-2024-0502 - Potential misuse of user funds in reward distribution due to

incorrect constructor settings - Low

Description: In the current design of the project, a single token is utilized for both staking and

distributing rewards. The rewards are allocated to users from a rewardWallet,

which is specified in the constructors of two related contracts. However, there is

a potential issue: if the rewardWallet is inadvertently set to the contract's own

address address(this), it could lead to the misappropriation of funds. This

situation could result in using the funds of some users as rewards for others, which

is not the intended use of the reward system.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 2/5

Recommendations

Recommendation: Add a check in the constructor to ensure that rewardWallet is different than

contract address (address(this)).

Remediation (revised commit: 2276c97): A check was introduced in the

constructor to ensure that rewardWallet is different than contract address (

address(this)).

12

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/f5472c36-54a2-43b0-a77f-5f143d67d25c

Observation Details

F-2024-0491 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.8.

This may result in the contracts being deployed using the wrong pragma version,

which is different from the one they were tested with. For example, they might be

deployed using an outdated pragma version which may include bugs that affect the

system negatively.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: Lock the pragma version in all contracts as 0.8.8 instead of ^0.8.8.

Remediation (revised commit: 2276c97): The pragma version in all contracts was

locked to 0.8.19.

13

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/fb5754b8-62d6-4fd3-8d33-e4d04588838a

F-2024-0492 - State variables only set in the constructor should be declared

immutable - Info

Description: Compared to regular state variables, the gas costs of constant and immutable

variables are much lower. Immutable variables are evaluated once at construction

time and their value is copied to all the places in the code where they are accessed.

This will lower the Gas taxes.

The following variables are affected:

StakingFlex: stakingToken, stakingTokenDecimals, rewardToken,

rewardTokenDecimals, rewardWallet.

StakingLockPeriod: stakingToken, stakingTokenDecimals,

rewardToken, rewardTokenDecimals, rewardWallet,

lockPeriodDuration.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: Consider marking state variables as an immutable that never changes on the

contract.

Remediation (revised commit: 2276c97): The reported state variables were set as

immutable.

14

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/264de08f-2c5c-4982-a3dc-476a5a760684

F-2024-0495 - Missing checks for zero address - Info

Description: In Solidity, the Ethereum address

0x00 is known as the zero

address. This address has significance because it is the default value for

uninitialized address variables and is often used to represent an invalid or non-

existent address.

The Missing zero address control issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero address,

leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address without

any checks, which essentially burns those tokens as they become irretrievable.

While sometimes this is intentional, without proper control or checks, accidental

transfers could occur.

The zero address should be checked for the following cases:

StackingLockPeriod: constructor → _stakingToken, _rewardToken,

_rewardWallet.

StackingFlex: constructor → _stakingToken, _rewardToken,

_rewardWallet.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: It is strongly recommended to implement checks to prevent the zero address from

being set during the initialization of contracts. This can be achieved by adding

require statements that ensure address parameters are not the zero address.

Remediation (revised commit: 2276c97): Zero address checks were implemented

for the reported variables.

15

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/e2df9ba6-848e-4251-8e41-b8181c570de7

F-2024-0503 - Redundant declaration - Info

Description: In the StakingLockPeriod contract, the state variable totalStakers is explicitly

initialized to 0 within the constructor. This initialization is redundant since

variables of type uint256 in Solidity are automatically initialized to 0 by default.

Including this unnecessary declaration not only adds an extra line of code but also

incurs a minor, yet avoidable, gas cost during the contract deployment. Removing

this redundant initialization can streamline the code for better efficiency and reduce

the gas cost associated with the contract's deployment.

Assets:
StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove the aforementioned redundant declaration.

Remediation (revised commit: 2276c97): The reported redundant declaration was

removed.

16

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/023889df-b9e6-41da-bff8-9111eb79a868

F-2024-0504 - Redundant calculations on claiming rewards - Info

Description: The function _claimRewards in the contract includes a call to

_calculateRewards. However, _claimRewards is invoked exclusively in scenarios

where a user initiates a withdrawal. During such withdrawals, _calculateRewards

is already called separately to update the user's rewards balance. This results in

_calculateRewards being executed twice in the same transaction sequence – first

independently and then again within _claimRewards. This redundancy leads to an

unnecessary consumption of Gas, as the same calculations and state updates are

performed twice.

Assets:
StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove the redundant call (_calculateRewards in

_claimRewards function),

Remediation (revised commit: 2276c97): The redundant call to

_calculateRewards was removed from _claimRewards.

17

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/e00a1b64-9afc-4a7e-9bc5-379c10f0103f

F-2024-0505 - Checks-Effects-Interactions pattern violation - Info

Description: State variables are updated after the external calls to the token contract.

As explained in Solidity Security Considerations, it is best practice to follow the

checks-effects-interactions pattern when interacting with external contracts to

avoid reentrancy-related issues.

This best practice is not followed in the following functions:

StakingFlex: forceWithdraw, _withdraw, _claimRewards.

StackingLockPeriod: forceWithdraw, _withdraw, _claimRewards.

Assets:
StackingFlex.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235]

StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: Follow the checks-effects-interactions pattern when interacting with external

contracts, by updating the state variables before making token transfer calls.

Remediation (revised commit: 2276c97): The checks-effects-interactions pattern

was implemented.

18

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/0a38714a-a497-41db-ac60-cd18b1346cdd
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern

F-2024-0506 - Redundant calculations in _calculateRewards when time

passed is zero - Info

Description: In the stackingLockPeriod contract, within the _calculateRewards function,

there is an inefficient handling of the startTime and endTime for staking

calculations. The startTime is set based on a conditional check, which compares

staker.timeOfLastUpdate with staker.unlockTime, choosing the latter if

staker.timeOfLastUpdate is greater. The endTime is invariably set to

staker.unlockTime. This approach leads to a scenario where both startTime

and endTime can be equal to staker.unlockTime, resulting in the calculation of

the time passed as zero (staker.unlockTime - staker.unlockTime = 0).

Consequently, this results in the function performing calculations using zero as the

time elapsed, which is an unnecessary computational step. A more efficient

approach would be to directly return zero as the reward in cases where the time

passed is calculated to be zero, thus avoiding redundant computations within the

_calculateRewards function and enhancing the overall efficiency of the contract.

Assets:
StackingLockPeriod.sol [https://github.com/dogami-code/Smart-Contracts-

EVM/tree/WIP/Stacking]

Status: Fixed

Recommendations

Recommendation: Consider returning 0 when the condition is met, avoiding unnecessary calculations.

Remediation (revised commit: 2276c97): The case where timeOfLastUpdate

could be greater than unlockTime was removed from _calculateRewards since it

cannot be triggered.

19

https://portal.hacken.io/App/Projects/Details/dc443b0d-7966-4471-9e31-6343dfc77597/Finding/c604767a-5a1c-4fc5-aa40-39427ee15b83

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing

of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the

intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code.

The report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not

consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free

status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you

should not rely on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated

versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and

other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

20

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited

scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to

asset loss. Contradictions and requirements violations. Major deviations from best practices are also in

this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a significant

impact on code execution, do not affect security score but can affect code quality score.

21

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/dogami-code/Smart-Contracts-EVM

Commit 2276c97

Whitepaper Not provided

Requirements Documentation

Technical Requirements Documentation

Contracts in Scope

./src/StakingFlex.sol

./src/StakingLockPeriod.sol

22

https://github.com/dogami-code/Smart-Contracts-EVM/commit/3b063ec71c18aa313cf614977ca20a18daa0c235
https://s3.amazonaws.com/statics.dogami.com/Audit/Dogami_Staking_Documentation_EVM_20240123.pdf
https://s3.amazonaws.com/statics.dogami.com/Audit/Dogami_Staking_Documentation_EVM_20240123.pdf

