
Smart Contract Code

Review And Security

Analysis Report

Customer: Genie Swap

Date: 08/01/2024

We thank Genie Swap for allowing us to conduct a Smart Contract Security Assessment. This

document outlines our methodology, limitations, and results of the security assessment.

GenieSwap is a farming protocol designed to allow users to open farms by locking in a specific farm

token for a defined period.

Platform: EVM

Language: Solidity

Tags: Farming,Staking

Timeline: 26.12.2023 � 08.01.2024

Methodology: https://hackenio.cc/sc_methodology

Last Review Scope

Repository https://github.com/Genieswap-com/simplified-farms-contracts

Commit 2fed0fdde983b6ec96592ec4d003cc33fd71540b

2

https://hackenio.cc/sc_methodology
https://github.com/Genieswap-com/simplified-farms-contracts

Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 2 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 1

Medium 0

Low 0

Vulnerability Status

F�2023�0286 � Exploitable "extendLockTime" Function in Farming Contract Fixed

F�2023�0287 � Exploitable Parameter Adjustment via "extendLockTime" in Yield Calculation Fixed

3

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/6c0a4290-8a9e-46d3-89b4-7f9c8e516656
https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/b38de941-5e3c-4dbe-b4d9-4306e2c5f3a2

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Genie Swap

Audited By Kaan Caglan

Approved By Przemyslaw Swiatowiec

Website https://genieswap.com/

Changelog 27/12/2023 � Preliminary Report

4

https://genieswap.com/

Table to Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 14

F�2023�0279 � Floating Pragma � Info 14

F�2023�0280 � Revert String Size Optimization � Info 15

F�2023�0281 � Custom Errors In Solidity For Gas Efficiency � Info 18

F�2023�0282 � Storage Layout Optimization � Info 19

F�2023�0283 � Avoid Using State Variables Directly In `Emit` For Gas Efficiency � Info 20

F�2023�0284 � Owner Can Renounce Ownership � Info 21

F�2023�0285 � Inefficient Resource Usage In ResetFarm Function � Info 22

F�2023�0308 � Cache State Variables � Info 24

Disclaimers 25

Hacken Disclaimer 25

Technical Disclaimer 25

Appendix 1. Severity Definitions 26

Appendix 2. Scope 27

System Overview

GenieSwap is a farming protocol designed to allow users to open farms by locking in a specific farm

token (and optionally a platform token for boosts) for a defined period. It facilitates earning yields

based on the lock time and amount, with an option to boost returns. The system consists of two main

contracts: TimelockedFarm for managing individual farms and FarmFactory for deploying these farm

contracts.

TimeLockedFarm � Manages the lifecycle of individual farms where users can lock tokens to earn

yield. It allows for operations like opening, boosting, extending, and ending farms.

FarmFactory � Deploys new instances of the TimelockedFarm contract with unique configurations. It

maintains a registry mapping farm tokens to their respective farm contracts.

Privileged roles

The owner of the contract can set parameters like minimum/maximum lock times, yield rates, and

amounts.

The owner of the contract can pause the contract or withdraw remaining tokens.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Natspec is sufficient.

Code quality

The total Code Quality score is 10 out of 10.

The code follows the Solidity best practices.

The code is structured and readable.

Test coverage

Code coverage of the project is 100% (branch coverage).

All of the functionalities are covered by unit tests.

Security score

Upon auditing, it was found that the code contained 1 critical, 1 high, 0 medium, and 0 low severity

issues. All the issues mentioned in the report were resolved, resulting in a security score of 10 out of

10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

No risks have been identified.

8

Findings

Vulnerability Details

F-2023-0286 - Exploitable "extendLockTime" Function in Farming

Contract - Critical

Description: The extendLockTime function in the farming contract allows users to

extend the lock time of their existing farms, recalculating and potentially

increasing the yield based on the new lock time. However, a design flaw

permits a user to initially stake tokens for a minimal duration, then extend

the lock time just before withdrawing, thus earning a disproportionate

yield. This issue circumvents the intended restriction of the lock-in period,

allowing users to claim higher rewards without committing their tokens for

the full duration.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Classification

Severity: Critical

Impact: 5/5

Likelihood: 5/5

Recommendations

Recommendation: The extendLockTime function should also reset lock time as it is done in

boostFarm and topUpFarm.

farm.startTime = block.timestamp;

Remediation �Revised commit: 926a0da): Client fixed this issue by

adding a control to the extendLockTime function which ensures that

extension can only be done within the original lock period.

// This check ensures that the extension can only be done within the original

// lock period, making users truly commit to the entire duration.

if (block.timestamp > startTime + oldLockTime) {

9

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/6c0a4290-8a9e-46d3-89b4-7f9c8e516656

 revert FarmHasEnded();

}

Evidences

POC

Reproduce:
Proof of Concept �POC� Steps:

Initial Farm Opening by Alice:

Alice opens a farm with x amount of tokens for the minimum allowed

duration, say 1 day, to minimize her commitment.

Waiting Period:

Alice waits for a significant period, e.g., 50 days, without interacting

with her farm. During this time, her farm accrues no rewards due to

the short initial lock time.

Strategic Extension of Lock Time:

Alice contemplates ending her farm. If she had initially opened the

farm with the intended 100-day lock period, she would be bound to

either wait out the full term to claim rewards or use the

emergencyEndFarm function prematurely to recover only her

principal without any rewards. To avoid this restriction, she instead

initially commits to a minimal 1-day period. Near the 50th day,

realizing she wants to end her farm, Alice strategically calls

extendLockTime with a new lock time set to 49 days, which is just

under the actual time she has had her tokens staked but far less than

the 100 days she initially planned. This maneuver allows her to

immediately use endFarm to claim a reward for 50 days, exploiting the

system to obtain rewards she would not have been entitled to under a

straightforward 100-day commitment.

Immediate Ending of Farm:

Immediately after extending the lock time, Alice calls **endFarm**.

Since the actual time passed �50 days) is now greater than the newly

set lock time �49 days � 1 days initially), she successfully ends her

farm and claims rewards for 50 days, despite initially committing to

only 1 day.

Proof of Concept �POC� �

>>> farm.openFarm(ONE_DAY, 10e18, False, {'from': alice})

Transaction sent: 0xc3ce4e951430a0987d5e

10

See more

11

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/6c0a4290-8a9e-46d3-89b4-7f9c8e516656

F-2023-0287 - Exploitable Parameter Adjustment via

"extendLockTime" in Yield Calculation - High

Description: The yield calculation mechanism within the farming contract is designed

to reward users based on a set of parameters, including a maximum

percentage rate (maxPr). However, a vulnerability exists where users can

exploit the extendLockTime function to benefit from updated maximum

percentage rates (maxPr) or other beneficial parameter changes made

after their farm was initially opened. This issue arises because the

extendLockTime function recalculates the yield based on the current

parameters, disregarding that these changes were intended only to affect

new farms opened after the changes.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Classification

Severity: High

Impact: 5/5

Likelihood: 3/5

Recommendations

Recommendation: It is recommended to lock parameter values for active farms when a farm

is opened. Snapshot the relevant parameters (e.g., maxPr, minPr) and

ensure that the yield for this farm is calculated based on these locked-in

values, even if parameters are later adjusted.

Remediation �Revised commit: 926a0da): Client fixed this issue by

adding a snapshot to those relevant parameters in openFarm function and

using them when calculating the reward.

// Snapshot parameters

farm.minPr = minPr;

farm.maxPr = maxPr;

farm.minLockTime = minLockTime;

farm.maxLockTime = maxLockTime;

farm.boostFactor = boostFactor;

12

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/b38de941-5e3c-4dbe-b4d9-4306e2c5f3a2

Evidences

POC

Reproduce:
Proof of Concept �POC� Steps :

Initial Setup by Protocol:

The protocol sets maxLockTime to 100 days and maxPr to 5000,

meaning users staking for 100 days can earn a reward of up to 50% of

their staked amount.

Alice's Strategic Farm Opening:

Alice opens a farm with a lock time of 100 days minus 1 second,

allowing her the flexibility to call extendLockTime later. She stakes

her tokens under the initial maxPr of 5000.

Protocol Parameter Adjustment:

50 days after Alice's farm opening, the protocol decides to incentivize

longer staking periods by increasing maxPr to 7500, permitting future

users to earn up to 75% of their staked amount over 100 days.

Alice's Exploitation of Parameter Change:

Seeing an opportunity, Alice calls extendLockTime with exactly 100

days, just before her original term ends. This action triggers a

recalculation of her yield based on the new maxPr of 7500. As a

result, Alice is positioned to receive a 75% reward, significantly more

than her initial potential reward, and also more than what was

intended for users who staked under the old terms.

Proof of Concept �POC� �

>>> farm.openFarm((100*ONE_DAY)-1, 10e18, False, {'from': alice})

Transaction sent: 0x0d9d51a2a782b78bfdb984f47c86f93b4d96ec89df45f955d4f52e989745a

 Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1

 TimelockedFarm.openFarm confirmed Block: 10 Gas used: 170745 (1.42%)

<Transaction '0x0d9d51a2a782b78bfdb984f47c86f93b4d96ec89df45f955d4f52e989745a4df

>>> farm.farms(alice)

(1703372451, 8639999, 4999000000000000000, True, False)

>>> chain.sleep(50*ONE_DAY)

>>> farm.setMaxPr(7500, {'f

See more

13

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/b38de941-5e3c-4dbe-b4d9-4306e2c5f3a2

Observation Details

F-2023-0279 - Floating Pragma - Info

Description: The project uses floating pragma ^0.8.20;

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: It is recommended to lock pragma version.

Remediation �Revised commit: 29d3699�� Client locked the pragma

version.

14

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/ec0d3a9f-2495-48a3-b4c3-1d170ced2086

F-2023-0280 - Revert String Size Optimization - Info

Description: Shortening the revert strings to fit within 32 bytes will decrease

deployment time and decrease runtime Gas when the revert condition is

met.

Revert strings that are longer than 32 bytes require at least one additional

mstore , along with additional overhead to calculate memory offset.

Path: ./contracts/Farm.sol

292: require(

293: config.farmToken != address(0),

294: "farm token address must not be zero"

295:);

296: require(farmOwner != address(0), "farm owner must not be address zero

385: require(

386: _farmToken.balanceOf(msg.sender) >= amount,

387: "farmer does not have enough farm-tokens"

388:);

393: require(

394: _platformToken.allowance(msg.sender, address(this)) >=

395: boostAmount,

396: "allowance for platform-token too low"

397:);

398: require(

399: _platformToken.balanceOf(msg.sender) >= boostAmount,

400: "farmer does not have enough platform-tokens"

401:);

419: require(

420: _farmToken.balanceOf(address(this)) >= totalTokensToPayout,

421: "farm does not have enough tokens to pay out yield"

422:);

456: require(

457: _farmToken.balanceOf(msg.sender) >= amount,

458: "farmer does not have enough farm-tokens"

459:);

488: require(

489: _farmToken.balanceOf(address(this)) >= totalTokensToPayout,

490: "farm does not have enough tokens to pay out yield"

15

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/a96fde13-05b1-47ae-8535-d6b49f44dd74

491:);

517: require(

518: _platformToken.allowance(msg.sender, address(this)) >= boostAmoun

519: "allowance for platform-token too low"

520:);

521: require(

522: _platformToken.balanceOf(msg.sender) >= boostAmount,

523: "farmer does not have enough platform-tokens"

524:);

557: require(

558: _farmToken.balanceOf(address(this)) >= totalTokensToPayout,

559: "farm does not have enough tokens to pay out yield"

560:);

599: require(

600: _farmToken.balanceOf(address(this)) >= totalTokensToPayout,

601: "farm does not have enough tokens to pay out yield"

602:);

622: require(

623: block.timestamp <= farm.startTime + farm.lockTime,

624: "farm has ended, end farm normally"

625:);

718: require(

719: minLockTime_ >= 86400,

720: "minumum lock time must be greater equal than one day"

721:);

746: require(minPr_ >= 1, "minumum PR must be greater equal than 1");

770: require(

771: minAmount_ < maxAmount,

772: "invalid new minimal farm token amount"

773:);

774: require(minAmount_ >= 1, "minumum amount must be greater equal than 1

786: require(

787: maxAmount_ > minAmount,

788: "invalid new maximum farm token amount"

789:);

811: require(

812: address(_platformToken) != address(0),

813: "platform token address must not be zero to enable boost"

16

814:);

815: require(

816: boostFactor_ > BASIS,

817: "cannot enable boost when boost factor is less than 1"

818:);

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: To optimize Gas usage in your Solidity contract, it is recommended to

keep revert strings as short as possible and to ensure that they fit within

32 bytes. It is possible to use abbreviations or simplified error messages

to keep the string length short. Doing so can reduce the amount of Gas

used during deployment and runtime when the revert condition is met.

Remediation �Revised commit: 0400efb): Client removed require

statements that use more than 32 bytes and introduced checks with

custom errors.

17

F-2023-0281 - Custom Errors in Solidity for Gas E�ciency - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature

known as "custom errors". These custom errors provide a way for

developers to define more descriptive and semantically meaningful error

conditions without relying on string messages. Prior to this version,

developers often used the `require` statement with string error messages

to handle specific conditions or validations. However, every unique string

used as a revert reason consumes gas, making transactions more

expensive.

Custom errors, on the other hand, are identified by their name and the

types of their parameters only, and they do not have the overhead of

string storage. This means that, when using custom errors instead of

`require` statements with string messages, the gas consumption can be

significantly reduced, leading to more gas-efficient contracts.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: It is recommended to use custom errors instead of revert strings to reduce

gas costs, especially during contract deployment. Custom errors can be

defined using the error keyword and can include dynamic information.

Remediation �Revised commit: 0400efb): Client removed require

statements and introduced custom errors for functions that do not have

onlyOwner modifier.

18

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/2a916dce-44f2-4111-b670-60705349ac62

F-2023-0282 - Storage Layout Optimization - Info

Description: Storage Layout Optimization in Solidity involves arranging state variables

to minimize gas costs. Since storage is expensive, combining variables

into as few slots as possible and deleting unneeded variables can

significantly reduce the gas needed for contract operations.

The variable definition

bool public boostEnabled;

should be come after IERC20Metadata private _platformToken; to

save 1 slot.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: To optimize storage and reduce gas costs, rearrange the storage variables

in a way that makes the most of each 32-byte storage slot.

Remediation �Revised commit: 6bd8102�� Client optimized the storage

by moving boostEnabled variable after an interface definition.

19

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/a6e5b491-0756-4b91-a68b-f2cb6a749aa1

F-2023-0283 - Avoid Using State Variables Directly in `emit` for Gas

E�ciency - Info

Description: In Solidity, function visibility is an important aspect that determines how

and where a function can be called from. Two commonly used visibilities

are `public` and `external`. A `public` function can be called both from

other functions inside the same contract and from outside transactions,

while an `external` function can only be called from outside the contract.

A potential pitfall in smart contract development is the misuse of the

`public` keyword for functions that are only meant to be accessed

externally. When a function is not used internally within a contract and is

only intended for external calls, it should be labeled as `external` rather

than `public`. Using `public` unnecessarily can introduce potential

vulnerabilities and also make the contract consume more gas than

required. This is because `public` functions have to add additional code

to handle both internal and external calls, while `external` functions can

be more optimized since they only handle external calls.

emit MinLockTimeChanged(minLockTime);

emit MaxLockTimeChanged(maxLockTime);

emit MinPrChanged(minPr);

emit MaxPrChanged(maxPr);

emit MinAmountChanged(minAmount);

emit MaxAmountChanged(maxAmount);

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: To reduce gas costs and maintain predictable contract behavior, consider

using local variables to store state variable values before emitting events.

This practice eliminates costly state variable lookups and ensures

smoother contract execution.

Remediation �Revised commit: 3a2abf9�� Client fixed this issue by using

a stack variable in emits instead of a state variable.

20

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/fff356df-8d36-4c1b-b25b-fc997c869c2a

F-2023-0284 - Owner Can Renounce Ownership - Info

Description: The smart contract under inspection inherits from the Ownable library,

which provides basic authorization control functions, simplifying the

implementation of user permissions. While the contract allows for the

transfer of ownership to a different address or account, it also retains the

default renounceOwnership function from Ownable. Once the owner

uses this function to renounce ownership, the contract becomes

ownerless. Evidence in the transaction logs shows that, following the

activation of the renounceOwnership function, any attempts to invoke

functions requiring owner permissions fail, with the error message:

"Ownable: caller is not the owner." This condition makes the

contract's adjustable parameters immutable, potentially rendering the

contract ineffective for any future administrative modifications that might

be needed.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: To mitigate this vulnerability:

Override the renounceOwnership function to revert transactions: By

overriding this function to simply revert any transaction, it will become

impossible for the contract owner to unintentionally (or intentionally)

render the contract ownerless and thus immutable.

Remediation �Revised commit: 9515b08�� Client fixed this issue by

overriding renounceOwnership function, which now reverts renounce

ownership transactions.

21

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/c2102657-8254-49b5-8b71-ba5a4d7b6d19

F-2023-0285 - Ine�cient Resource Usage in resetFarm Function -

Info

Description: The resetFarm function is designed to reset the farming details of a

given farmer by manually setting each variable in the Farm struct to its

default value. This includes setting integer values to 0 and boolean values

to false. However, this method of individually resetting each property is

less efficient and potentially more error-prone compared to utilizing the

Solidity delete keyword. The delete keyword resets a struct to its

default values in a single operation, which not only simplifies the code but

also potentially reduces gas costs by minimizing the number of operations

required to reset the struct.

 function resetFarm(address farmer) private {

 Farm storage farm = farms[farmer];

 farm.lockedAmount[address(_farmToken)] = 0;

 farm.lockedAmount[address(_platformToken)] = 0;

 farm.active = false;

 farm.boosted = false;

 farm.lockTime = 0;

 farm.startTime = 0;

 farm.yield = 0;

 }

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: Replace the individual assignments of variables with a single delete

farms[farmer] statement. This will reset the entire Farm struct to its

default values.

The modified function should look like this:

function resetFarm(address farmer) private {

 delete farms[farmer];

}

22

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/35d7d8e8-192f-4b65-bc28-f1e8cc962a5c

Remediation �Revised commit: 974a006�� The delete the keyword was

implemented in the resetFarm function.

23

F-2023-0308 - Cache State Variables - Info

Description: Cache state variables issues in Solidity refer to situations where

developers fail to efficiently manage and update state variables in smart

contracts. These issues can lead to suboptimal gas usage, decreased

contract performance, and even vulnerabilities that can be exploited by

malicious actors. Properly handling and caching state variables is crucial

for maintaining efficient and secure smart contracts.

If same state variable is being used in same function as getter more than

one time that variable can be cached to save Gas.

 if (farm.boosted) {

 amountToRefund = farm.lockedAmount[address(_platformToken)];

 farm.lockedAmount[address(_platformToken)] = 0;

 _platformToken.safeTransfer(farmer, amountToRefund);

 }

 emit FarmEnded(

 farmer,

 farm.boosted,

 farm.startTime,

 farm.lockTime,

 farm.yield

);

For example farm.boosted here is used more than one time so it ban be

cached.

Assets:
contracts/Farm.sol [https://github.com/Genieswap-com/simplified-

farms-contracts]

Status: Fixed

Recommendations

Recommendation: Enhance contract efficiency and security by caching state variables in

memory when used multiple times in a function. This approach reduces

gas consumption and potential vulnerabilities from frequent state variable

updates.

Remediation �Revised commit: e67495c): Client cached frequently used

state variables to stack variables.

24

https://portal.hacken.io/App/Projects/Details/6d8b234b-87e9-4d43-9f37-d51133954dcf/Finding/4e16317c-fa13-4bca-8b1e-aeda97b775d8

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

25

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

26

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Genieswap-com/simplified-farms-contracts

Commit 926a0dac1e9dea07e886cb891d5a43f9d4213fb4

Whitepaper Not provided

Requirements
https://github.com/Genieswap-com/simplified-farms-

contracts/docs

Technical

Requirements

https://github.com/Genieswap-com/simplified-farms-

contracts/docs

Contracts in Scope

./contracts/Farm.sol

./contracts/FarmFactory.sol

27

https://github.com/Genieswap-com/simplified-farms-contracts
https://github.com/Genieswap-com/simplified-farms-contracts/docs
https://github.com/Genieswap-com/simplified-farms-contracts/docs

