
Smart Contract Code

Review And Security

Analysis Report

Customer: Paribus

Date: 08/01/2024

We thank Paribus for allowing us to conduct a Smart Contract Security Assessment. This document

outlines our methodology, limitations, and results of the security assessment.

The Paribus Protocol is an Ethereum smart contract for supplying or borrowing assets. Through the

pToken contracts, accounts on the blockchain supply capital (Ether or ERC-20 tokens) to receive

pTokens or borrow assets from the protocol (holding other assets as collateral). The Paribus pToken

contracts track these balances and algorithmically set interest rates for borrowers.

Platform: EVM

Language: Solidity

Tags: Governance, Timelock

Timeline: 28.11.2023 - 05.01.2024

Methodology: https://hackenio.cc/sc_methodology

Last Review Scope

Repository https://github.com/Paribus/paribus-protocol

Commit a45f4e9acab6879e90af4655a093f708e5418028

Remediation 1be7f09814f68bf6ef34f995eb3aa04eaa023426

2

https://hackenio.cc/sc_methodology
https://github.com/Paribus/paribus-protocol

Audit Summary

10/10 8/10 83.33% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9/10
The system users should acknowledge all the risks summed up in the risks section of the report

6 5 1 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 3

Low 2

Vulnerability Status

F-2023-0058 - Redundant Function Accepted

F-2023-0050 - Unsafe Use of DelegateCall Fixed

F-2023-0053 - Redundant Fallback function Fixed

F-2023-0055 - Missing Zero Address Validation Fixed

F-2023-0057 - Missing Validation Of msg.value In executeTransaction() Fixed

F-2023-0060 - Funds Lock Fixed

3

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/11d5b20b-cab7-4ad9-a87b-381f3745a4e4
https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/ef5d15af-cc9a-4f23-a818-15d72a971325
https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/d0f4d9a8-a119-40f1-8fc7-a9629b9e1f8a
https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/ac6d5693-0233-44d7-8508-d80380c0b8c0
https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/3601c7bc-578c-47e6-8de6-32ab7211e1e7
https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/7444d4bf-68b4-4008-9267-755923088e63

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Paribus

Audited By Turgay Arda Usman, Kornel Światłowski

Approved By Grzegorz Trawinski

Website https://paribus.io

Changelog 06/12/2023 - Preliminary Report; 05/01/2024 - Final Report

4

https://paribus.io/

Table to Contents

System Overview 6

Executive Summary 7

Risks 8

Findings 9

Disclaimer 23

Appendix 1. Severity Definitions 24

Appendix 2. Scope 25

System Overview

Paribus is a Cardano-based lending/borrowing platform that aims to support conventional and

unconventional crypto assets to allow for its users to unlock liquidity and interact with the markets

without having to liquidate assets. It has the following contracts:

GovernorDelegate — Used to initialize the contract during delegator constructor.

GovernorDelegator — delegator contract for the GovernorDelegate.

GovernorModerator - handles moderator assignments.

Privileged roles

The Timelock contract incorporates a custom implementation of admin and pendingAdmin roles.

The admin is empowered to set a new delay, accept a new admin, queue, cancel, and execute

new transactions.

The GovernorModerator contract implements a custom moderator role, allowing the address

assigned to that role to invoke a queue.

The GovernorDelegator contract employs a custom implementation of an admin role, allowing the

address assigned to that role to establish a new implementation contract address, initialize

implementation contract, launch PBX Rewards Campaign, set voting delay and period, set new

moderator address, set the proposal threshold, add given address to whitelist and assinge

whitelistGuardian role and set pedning admin role. This contract also implements

whitelistGuardian role that can cancel given proposal and set the whitelist expiration as a

timestamp for an account.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are detailed.

Technical description is provided.

Code quality

The total Code Quality score is 8 out of 10.

The code contains style guide and best practice violations

See informational issues

The development environment is configured.

Test coverage

Code coverage of the project is 83.33% (branch coverage) .

Deployment and basic user interactions are covered with tests.

Interactions by several users are tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 3 medium, and 2 low severity issues,

leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

No risks were identified.

8

Findings

Vulnerability Details

F-2023-0050 - Unsafe Use of DelegateCall - Medium

Description: The GovernorDelegateor.sol benefits from delegatecalls while initializing

the GovernorDelegate.sol contract. To do this, the contract calls the

internal function delegateTo(). This function executes a delegatecall and

then checks if the call is successful or not via the following if block:

 function delegateTo(address callee, bytes memory data) internal {

 (bool success, bytes memory returnData) = callee.delegatecall(data);

 assembly {

 if eq(success, 0) {

 revert(add(returnData, 0x20), returndatasize())

 }

 }

 }

The success flag, in the check, returned by delegatecall does not indicate

whether the callee reverted or encountered an exception. It only indicates

whether the call was executed successfully within the context of the

callee. This means that even if the callee encounters a revert, the

success flag might still be true.

This can lead the execution to continue even if the delegatecall fails.

Assets:
GovernorDelegator.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Classification

Severity: Medium

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To handle reverts or exceptions in the callee, the return data should be

checked. If the first 32 bytes of the return data are non-zero, it typically

9

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/ef5d15af-cc9a-4f23-a818-15d72a971325

indicates an error or revert. A change in the code like the following would

fix the issue:

function delegateTo(address callee, bytes memory data) internal {

 (bool success, bytes memory returnData) = callee.delegatecall(data);

 assembly {

 if eq(success, 0) {

 revert(add(returnData, 0x20), returndatasize())

 }

 }

 require(returnData.length == 0 || (returnData.length >= 32 && uint256(abi.dec

}

This version checks if the delegatecall was unsuccessful based on the

success flag, and then checks the return data to see if it contains a revert

reason. If the return data length is greater than or equal to 32 bytes and

the first 32 bytes are non-zero, it indicates a revert.

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): The function is updated

as suggested in the recommendation.

10

F-2023-0057 - Missing Validation Of msg.value In

executeTransaction() - Medium

Description: The executeTransaction() function is designed to execute a queued

transaction after a specified period, and it is marked as payable.

However, there is a lack of validation to ensure that the msg.value used

in executeTransaction() matches the required value for the queued

transaction. In cases where msg.value differs, it may result in a

temporary funds lock.

 function executeTransaction(address target, uint value, string memory signatu

 require(msg.sender == admin, "Timelock::executeTransaction: Call must com

 bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta

 require(queuedTransactions[txHash], "Timelock::executeTransaction: Transa

 require(getBlockTimestamp() >= eta, "Timelock::executeTransaction: Transa

 require(getBlockTimestamp() <= eta + GRACE_PERIOD, "Timelock::executeTran

 queuedTransactions[txHash] = false;

 bytes memory callData;

 if (bytes(signature).length == 0) {

 callData = data;

 } else {

 callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data

 }

 // solium-disable-next-line security/no-call-value

 (bool success, bytes memory returnData) = target.call{value: value}(callD

 require(success, "Timelock::executeTransaction: Transaction execution rev

 emit ExecuteTransaction(txHash, target, value, signature, data, eta);

 return returnData;

 }

Assets:
Timelock.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Classification

Severity: Medium

11

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/3601c7bc-578c-47e6-8de6-32ab7211e1e7

Impact: 3/5

Likelihood: 2/5

Recommendations

Recommendation: It is recommended to include validation to verify whether the msg.value

utilized in executeTransaction() aligns with the required value for

executing the queued instruction.

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): The following check is

added: require(value == msg.value,

"Timelock::executeTransaction: Transaction ETH value

mismatch");

12

F-2023-0060 - Funds Lock - Medium

Description: The GovernorDelegator.sol contract delegates function calls coming to it

to the deployed GovernorDelegate.sol contract, in other words, to the

implementation contract. This forwarding is done through a fallback

function. As the implemented fallback function has the payable modifier, it

accepts native coins. However, neither the implementation contract nor

this contract can handle native coins by design. This means that it is

possible to send native funds to the contract and since the contract

cannot handle native tokens they will be stuck.

fallback() external payable {

 // delegate all other functions to current implementation

 (bool success,) = implementation.delegatecall(msg.data);

 assembly {

 let free_mem_ptr := mload(0x40)

 returndatacopy(free_mem_ptr, 0, returndatasize())

 switch success

 case 0 { revert(free_mem_ptr, returndatasize()) }

 default { return (free_mem_ptr, returndatasize()) }

 }

}

This can lead to a funds lock situation.

Assets:
GovernorDelegator.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Classification

Severity: Medium

Impact: 3/5

Likelihood: 1/5

Recommendations

Recommendation: Implement a refund mechanism for the native tokens into the fallback

function.

13

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/7444d4bf-68b4-4008-9267-755923088e63

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): Withdraw mechanism

for native tokens is added.

14

F-2023-0053 - Redundant Fallback function - Low

Description: The Timelock contracts accept native tokens through fallback

function. The contract's purpose is not to store native tokens, and this

introduces unnecessary complexity, raises deployment costs, and may

result in temporary fund lock.

Assets:
Timelock.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 1/5

Recommendations

Recommendation: It is recommended to remove the unnecessary fallback function.

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): Empty fallback

function is removed.

15

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/d0f4d9a8-a119-40f1-8fc7-a9629b9e1f8a

F-2023-0055 - Missing Zero Address Validation - Low

Description: Address input parameters are being used without checking against the

possibility of 0x0 value.

The following functions are missing such input validation:

 _setModerator(), _setWhitelistGuardian(), _setPendingAdmin(),

constructor(),

This can lead to unwanted external calls to 0x0.

Assets:
Timelock.sol [https://github.com/Paribus/paribus-protocol]

GovernorModerator.sol [https://github.com/Paribus/paribus-protocol]

GovernorDelegate.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Classification

Severity: Low

Impact: 1/5

Likelihood: 1/5

Recommendations

Recommendation: Implement zero address checks.

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): Check against zero

address is add in mentioned functions.

16

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/ac6d5693-0233-44d7-8508-d80380c0b8c0

F-2023-0058 - Redundant Function - Info

Description: The getBlockTimestamp() and the getBlockNumber() functions are

redundant, as they only return the global variables block.timestamp and

block.number.

function getBlockTimestamp() internal view returns (uint) {

 // solium-disable-next-line security/no-block-members

 return block.timestamp;

}

function getBlockTimestamp() public virtual view returns (uint) {

 return block.timestamp;

}

This will lead to unnecessary gas and storage consumption.

Assets:
Timelock.sol [https://github.com/Paribus/paribus-protocol]

GovernorDelegate.sol [https://github.com/Paribus/paribus-protocol]

Status: Accepted

Classification

Severity: Info

Recommendations

Recommendation: Remove the redundant functions

Remediation-Mitigated: The client stated that they are aware of these

functions, and they are keeping them for testing purposes.

17

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/11d5b20b-cab7-4ad9-a87b-381f3745a4e4

Observation Details

F-2023-0016 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.10.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version,

which may include bugs that affect the system negatively.

Assets:
GovernorDelegate.sol [https://github.com/Paribus/paribus-protocol]

GovernorDelegator.sol [https://github.com/Paribus/paribus-protocol]

GovernorInterfaces.sol [https://github.com/Paribus/paribus-protocol]

GovernorModerator.sol [https://github.com/Paribus/paribus-protocol]

Timelock.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs

(https://github.com/ethereum/solidity/releases) for the compiler version

that is chosen.

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): Floating pragma is set

to 0.8.10.

18

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/5dea744b-930a-44cc-a1c5-c52833139f42
https://github.com/ethereum/solidity/releases

F-2023-0047 - Use Custom Errors Instead Of Error Strings To Save

Gas - Info

Description: Custom errors were introduced in Solidity version 0.8.4, and they offer

several advantages over traditional error handling mechanisms:

Gas Efficiency: Custom errors can save approximately 50 Gas each

time they are hit because they avoid the need to allocate and store

revert strings. This efficiency can result in cost savings, especially

when working with complex contracts and transactions.

Deployment Gas Savings: By not defining revert strings, deploying

contracts becomes more Gas-efficient. This can be particularly

beneficial when deploying contracts to reduce deployment costs.

Versatility: Custom errors can be used both inside and outside of

contracts, including interfaces and libraries. This flexibility allows for

consistent error handling across different parts of the codebase,

promoting code clarity and maintainability.

Assets:
Timelock.sol [https://github.com/Paribus/paribus-protocol]

GovernorModerator.sol [https://github.com/Paribus/paribus-protocol]

GovernorDelegator.sol [https://github.com/Paribus/paribus-protocol]

GovernorDelegate.sol [https://github.com/Paribus/paribus-protocol]

Status: Accepted

Recommendations

Recommendation: It is recommended to use custom errors to save some Gas,

Remediation: The client stated that they will leave the issue as it is.

19

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/a68f2414-56bc-42e3-bcd3-c051552b52c8

F-2023-0057 - Interface Tagged as a Contract - Info

Description: The GovernorDelegatorInterface interface in the GovernorInterfaces.sol

contract is tagged as a contract.

contract GovernorDelegatorInterface is GovernorDelegationStorage {

 /// @notice Emitted when implementation is changed

 event NewImplementation(address oldImplementation, address newImplementation

}

Assets:
GovernorInterfaces.sol [https://github.com/Paribus/paribus-protocol]

Status: Accepted

Recommendations

Recommendation: Change the “contract” statement with an “ interface statement.

Remediation: The client stated that they will leave the issue as it is.

20

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/1a64afd3-1eca-4ba0-b477-1806efed87bb

F-2023-0062 - Public Functions That Should Be External - Info

Description: Functions that are meant to be exclusively invoked from external sources

should be designated as "external" rather than "public." This is essential to

enhance the overall security of the contract.

Assets:
GovernorDelegate.sol [https://github.com/Paribus/paribus-protocol]

Status: Fixed

Recommendations

Recommendation: Transition the initialize() and propose() functions, which are

exclusively utilized by external entities, from their current "public" visibility

setting to the "external" visibility setting.

Remediation (revised commit:

1be7f09814f68bf6ef34f995eb3aa04eaa023426): The functions are

updated as suggested in the recommendation.

21

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/f9e4100c-1f68-4680-9540-769be0246530

F-2023-0063 - Code Duplication Of Owner Restricted Access Check -

Info

Description: The recurrent utilization of the following check in multiple functions is

evident: require(msg.sender == admin);. Enhancing Gas efficiency

can be achieved by crafting a modifier and employing it consistently.

Assets:
GovernorDelegate.sol [https://github.com/Paribus/paribus-protocol]

Status: Accepted

Recommendations

Recommendation: It is recommended to create an onlyAdmin modifier and apply it

consistently for improved code structure.

Remediation: The client stated that they will leave the issue as it is.

22

https://portal.hacken.io/App/Projects/Details/ace1242a-efe7-40cc-ba53-3c6ff0ffb25b/Finding/f2f01053-e369-4e60-8962-253212dee9ec

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

23

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that considers the potential

impact of any vulnerabilities and the likelihood of them being exploited. The matrix of impact and

likelihood is a commonly used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it were to be exploited.

For smart contracts, this could include the loss of funds or assets, unauthorized access or control, or

reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the likelihood of an

attack occurring, the level of skill or resources required to exploit the vulnerability, and the presence

of any mitigating controls that could reduce the likelihood of exploitation.

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

24

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/Paribus/paribus-protocol

Commit a45f4e9acab6879e90af4655a093f708e5418028

Whitepaper https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf

Requirements https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf

Technical Requirements Natspec

Scope Details

Repository https://github.com/Paribus/paribus-protocol

Commit 1be7f09814f68bf6ef34f995eb3aa04eaa023426

Whitepaper https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf

Requirements https://docs.paribus.io/docs/for-developers/governance

Technical Requirements https://docs.paribus.io/docs/for-developers/governance

Contracts in Scope

contracts/Governance/GovernorDelegate.sol

contracts/Governance/GovernorDelegator.sol

contracts/Governance/GovernorInterfaces.sol

contracts/Governance/GovernorModerator.sol

contracts/Governance/Timelock.sol

25

https://github.com/Paribus/paribus-protocol
https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf
https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf
https://github.com/Paribus/paribus-protocol
https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf
https://docs.paribus.io/docs/for-developers/governance
https://docs.paribus.io/docs/for-developers/governance

