
Smart Contract Code
Review And Security
Analysis Report

Customer: Ociswap

Date: 16 Jan, 2024

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank Ociswap for allowing us to conduct a Smart Contract Security

Assessment. This document outlines our methodology, limitations, and results

of the security assessment.

Ociswap AVLTree is a scalable implementation of a binary tree structure in

Scrypto.

Platform: Radix DLT

Language: Rust, Scrypto

Tags: AVL Tree

Timeline: 17.10.2023 - 17.01.2023

Methodology: Link

Last review scope

Repositories https://github.com/ociswap/scrypto-avltree

Commit 254a7ab

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hackenio.cc/sc_methodology
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

10/10
Code quality score

100%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

0
Total Findings

0
Resolved

1
Acknowledged

0
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 0 0 0 0

High 0 0 0 0

Medium 0 0 0 0

Low 1 0 0 1

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
Ociswap

Approved By Grzegorz Trawiński | SC Audits Expert at Hacken OÜ

Audited By
Jakub Heba | SC Auditor at Hacken OÜ
Vladyslav Khomenko | SC Auditor at Hacken OÜ

Website https://ociswap.com

Changelog
20.11.2023 – Preliminary Report
17.01.2024 - Remediation Check

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://ociswap.com
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction... 6
System Overview..6
Executive Summary..6
Risks...7
Findings... 8

Critical.. 8
High.. 8
Medium...8
Low... 9

L01. Floating language version... 9
Informational.. 10

I01. Unnecessary pattern matching is redundant....................................... 10
I02. Vulnerable dependencies...11
I03. Unformatted Code..12
I04. AlvTree optimization to fix recomputation... 12

Disclaimers.. 14
Appendix 1. Severity Definitions.. 15

Risk Levels..16
Impact Levels... 16
Likelihood Levels... 17
Informational.. 17

Appendix 2. Scope..18

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ �Consultant) was contracted by Ociswap �Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of the Customer's smart contracts.

System Overview

AvlTree - is a radix-specific library implementation of a balanced binary tree

structure in Scrypto. It is able to overcome limitations of built-in Rust key-value

maps since it is able to lazy load specific elements instead of loading the whole

collection.

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

● Functional and technical requirements are provided in full.

● Code is properly outlined with comments.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 100% (functional coverage).

● The code is thoroughly tested.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hackenio.cc/sc_methodology
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Security score

As a result of the audit, the code contains 1 low severity issue. The security

score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 10. The system users should acknowledge all the risks summed up in the

risks section of the report.

Risks
● Current implementation of the AVLTree has room for gas efficiency

optimisations.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low

L01. Floating language version

Impact Low

Likelihood Low

It is preferable for a production project, especially a smart contract, to have the

programming language version pinned explicitly. This results in a stable build

output, and guards against unexpected toolchain differences or bugs present in

older versions, which could be used to build the project.

The language version could be pinned in automation/CI scripts, as well as

proclaimed in README or other kinds of developer documentation. However, in

the Rust ecosystem, it can be achieved more ergonomically via a

rust-toolchain.toml descriptor (see

https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file)

Path: *

Recommendation: It is suggested to set a concrete Rust version.

Found in: d1f4553

Status: Accepted

Remediation: The compiler version is already pinned through the Scrypto

toolchain using Deterministic Builder.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Informational

I01. Unnecessary pa�ern matching is redundant

At the beginning of its call, the insert function verifies whether the key already

exists in the store, and if so, old value is returned, new value is inserted, and

execution is finished. In the next step, the insert_node_in_empty_spot function is

called, which has pattern matching in its content verifying whether there is any

child in the key direction.

fn insert_node_in_empty_spot(&mut self, key: &K, value: V) -> Option<(K,

Direction)> {

let mut current = self.root.clone();

let mut parent = None;

while let Some(parent_key) = current.as_ref() {

let current_node = self.get_node(parent_key).expect("Root should

exist");

match current_node.get_child_in_key_direction(key) {

Some(child) => {

parent = current;

current = child.cloned();

}

None => {

panic!("Key already exists this should be caught in the

beginning of insert");

}

}

}

If self.key is greater, left_child is returned. If it is less, right_child is returned.

However, none is returned only for the case when self.key already exists in the

tree. Since this case was already checked at the beginning of the insert function

execution, it is impossible that at that state these keys will be equal.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

fn get_child_in_key_direction(&self, other_key: &K) -> Option<Option<&K>> {

match self.key.cmp(other_key) {

Greater => Some(self.left_child.as_ref()),

Equal => None,

Less => Some(self.right_child.as_ref()),

}

}

Ultimately, whole pattern matching is unnecessary because the Some() branch

will be reached every time.

Path: ./src/avl_tree.rs : insert_node_in_empty_spot()

Recommendation: It is suggested to remove whole pattern matching to reduce

the cost of transaction execution and the readability of the code.

Found in: d1f4553

Status: Fixed �Revised commit: 254a7ab)

Remediation: Unnecessary code is removed.

I02. Vulnerable dependencies

Few contracts and libraries use packages with publicly known vulnerabilities,

which is considered a deviation from leading security practices. Vulnerable

packages may have uncertain impact on implemented functionalities.

Crate: ed25519-dalek

Version: 1.0.1

Title: Double Public Key Signing Function Oracle Attack on `ed25519-dalek`

Date: 2022-06-11

ID: RUSTSEC-2022-0093

URL: https://rustsec.org/advisories/RUSTSEC-2022-0093

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Solution: Upgrade to >=2

Dependency tree:

ed25519-dalek 1.0.1

Path: ./Cargo.toml

Recommendation: It is recommended to verify that none of the vulnerable

functions are used in the code, or update the package to a higher, secure

version.

Found in: d1f4553

Status: Fixed �Revised commit: 254a7ab)

Remediation: The vulnerable dependency is used by the SDK and is only used in

tests. The contract does not have vulnerable dependencies.

I03. Unforma�ed Code

The tool cargo fmt --check reports that code is not formatted.

Path: *

Recommendation: It is suggested to format the code using rustfmt or an

equivalent.

Found in: d1f4553

Status: Fixed �Revised commit: 254a7ab)

Remediation: The code is now formatted by rustfmt - default formatter.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I04. AlvTree optimization to fix recomputation

During the operation of AvlTree, a lot of times, the same node has to be

accessed multiple times. At the moment, it is also retrieved multiple times. This

is slow, but fortunately, the nodes are cached into HashMap, which makes it less

computational intensive. However, this optimization does not fully solve the

problem of retrieving the same node over and over again during one operation

on the tree such as insertion. This is probably done in order to satisfy the strict

Rust compiler and its borrow checker. The functions get_node and

get_mut_node are used in this constantly.

Repeated computation decreases efficiency and increases cost of

operation/usage.

pub(crate) fn get_node(&mut self, key: &K) -> Option<&Node<K, ()>> {

self.cache_if_missing(key);

// Carefully this is not synced with the store!

self.store_cache.get(&key)

}

fn get_mut_node(&mut self, key: &K) -> Option<&mut Node<K, ()>> {

self.cache_if_missing(key);

self.store_cache.get_mut(key)

}

Path: ./src/avl_tree.rs

Recommendation: Since this is a library data structure, we recommend working

on optimizing it. For example, it is possible to utilize the same HashMap

optimization except only fetch nodes once by operating on raw pointers to

them. Keep in mind that insertions into HashMap can cause underlying data to

move which would invalidate the pointers.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Found in: d1f4553

Status: Accepted

Remediation: It was decided that the suggested optimisation would require

many code changes, but result in a minor performance improvement.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details - Preliminary Audit

Repositories https://github.com/ociswap/scrypto-avltree

Commits d1f4553e70339dfd98a12658cf4c4449c9583f1c

Whitepaper -

Requirements Link

Technical
Requirements Link

Contracts in Scope

./src/avl_tree.rs

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/ociswap/scrypto-avltree/blob/d1f4553e70339dfd98a12658cf4c4449c9583f1c/README.md
https://github.com/ociswap/scrypto-avltree/blob/d1f4553e70339dfd98a12658cf4c4449c9583f1c/TECHNICAL_README.md
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Scope details - Remediation

Repositories https://github.com/ociswap/scrypto-avltree

Commits 254a7ab209bd928462509f7ca1dcf7b05add4094

Whitepaper -

Requirements Link

Technical
Requirements Link

Contracts in Scope

./src/avl_tree.rs

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/ociswap/scrypto-avltree/blob/254a7ab209bd928462509f7ca1dcf7b05add4094/README.md
https://github.com/ociswap/scrypto-avltree/blob/254a7ab209bd928462509f7ca1dcf7b05add4094/TECHNICAL_README.md
https://hacken.io/

