
Smart Contract Code

Review And Security

Analysis Report

Customer: Ignition Staking 2.0

Date: 19/01/2024



We express our gratitude to the Ignition Staking 2.0 team for the collaborative engagement that

enabled the execution of this Smart Contract Security Assessment.

Ignition Staking 2.0 is a staking platform featuring an off-chain reward mechanism. It enables the

deposit of PAID tokens in exchange for sPAID tokens.

Platform: EVM

Language: Solidity

Tags: ERC20, Staking

Timeline: 15/01/2024 � 16/01/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/PAIDNetwork/ignition-sc-staking

Commit 9478499

2

https://hackenio.cc/sc_methodology
https://github.com/PAIDNetwork/ignition-sc-staking


Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 1

Vulnerability Status

F�2024�0463 � Unchecked Transfers Operations Fixed

3

https://portal.hacken.io/App/Projects/Details/d2d07ac4-75cb-41ec-b570-df7fbb7b0a51/Finding/872c0815-4f94-4f22-8078-f0e2b46e4bb2


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for Ignition

Staking 2.0

Audited By Eren Gonen

Approved

By
Grzegorz Trawinski

Website https://paidnetwork.com/

Changelog  16/01/2024 � Preliminary Report

09/01/2024 � Remediation

4

https://paidnetwork.com/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

F�2024�0463 � Unchecked Transfers Operations � Low 9

Observation Details 11

F�2024�0462 � Missing Events � Info 13

Disclaimers 15

Hacken Disclaimer 15

Technical Disclaimer 15

Appendix 1. Severity Definitions 16

Appendix 2. Scope 17



System Overview

Ignition Staking 2.0 is a staking platform where users can lock their PAID tokens to receive sPAID

tokens in exchange. This system allows users the option to withdraw their deposited PAID tokens by

burning the corresponding sPAID tokens. A tax is applied to both deposit and withdrawal

transactions. Notably, the reward mechanism off-chain. The relevant contracts are as follows:

ERC20  � A simple ERC�20 token mints the deposited amount to the user when they execute a

deposit and burns the amount when the user executes a withdrawal. The owner does not have the

right to mint or burn tokens.

It has the following attributes:

Name: Staked PAID

Symbol: sPAID

Decimals: 18

Total supply: N/A.

SPAID �A contract that mints sPAID tokens when a user deposits PAID tokens and burns sPAID

when a user wishes to withdraw the deposited PAID token amount.

Privileged roles

The owner of the contract can update the deposit and withdrawal tax amounts within a range of

1�10. 

The owner has the capability to update the treasury wallet address

The owner can withdraw the all deposited PAID tokens from the contract.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage).

Deployment and user interactions are thoroughly tested, covering both negative and positive

cases.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 1 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The owner of the contract has the authority to transfer all deposited PAID tokens after a user's

deposit. The withdrawal of deposited PAID tokens is not guaranteed.

The reward mechanism is entirely off-chain and cannot be verified.

8



Findings

Vulnerability Details

F-2024-0463 - Unchecked Transfers Operations - Low

Description: In the SPAID.sol contract, there are instances where the

transferFrom() function is called to transfer tokens. However, the

contract does not check the return values of these transferFrom()

calls.  Not all ERC20 tokens are guaranteed to revert on failure; some may

return a boolean value (false) instead. If the SPAID.sol contract interacts

with such tokens, a failed transfer would not cause the transaction to

revert, potentially leading to discrepancies in the contract's state.

The functions that do not check the return value of transfers include:

deposit()

withdraw()

withdrawAllStaked()

Assets:
contracts/SPAID.sol

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 1

Impact �1�5�� 4

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 2.0 [Low]

Recommendations

Recommendation: Either use the SafeERC20 library in the mentioned functions to interact

with tokens safely, or implement a return value check for the transfer

functions.

Remediation �Revised commit: 9478499�� The SafeERC20 library from

OpenZeppelin was implemented.

9

https://portal.hacken.io/App/Projects/Details/d2d07ac4-75cb-41ec-b570-df7fbb7b0a51/Finding/872c0815-4f94-4f22-8078-f0e2b46e4bb2


Observation Details

F-2024-0460 - Solidity version 0.8.20 might not work on all chains

due to `PUSH0` - Info

Description: Solidity version 0.8.20 employs the recently introduced PUSH0 opcode in

the Shanghai EVM, this opcode might not be universally supported across

all blockchain networks and Layer 2 solutions. It is advisable to use an

earlier version of solidity to ensure compatibility.

Assets:
contracts/SPAID.sol

Status: Fixed

Recommendations

Recommendation: To ensure compatibility with a wide range of blockchain networks and

Layer 2 solutions, consider using an earlier version of Solidity that does

not rely on the PUSH0 opcode introduced in Solidity version 0.8.20. Using

a more widely supported Solidity version can help avoid potential

compatibility issues and ensure the smooth deployment and execution of

smart contracts.

Remediation �Revised commit: d5fd4cb): The team fixed this issue by

downgrading the Solidity version to 0.8.19.

10

https://portal.hacken.io/App/Projects/Details/d2d07ac4-75cb-41ec-b570-df7fbb7b0a51/Finding/3b23bd1f-2cd4-4bd2-82d3-5f18fbc0de66


F-2024-0461 - Redundant Check in `deposit()` Function Due to

Tautology in Requirement - Info

Description: In the deposit() function of the contract, there is an if statement that

checks if the amount parameter is less than or equal to zero. The

statement is structured as follows:

if (amount <= 0)

However, this check contains a logical redundancy, as the amount variable

is defined as a uint256. In Solidity, uint256 (unsigned integer) variables

inherently cannot hold negative values; they are always zero or positive.

Therefore, the condition amount < 0 is always false, making the < part of

the <= operator redundant.

Assets:
contracts/SPAID.sol

Status: Fixed

Recommendations

Recommendation: Remove the < operator and reconfigure the if statement to eliminate

redundancy. For instance, implement if (amount == 0) as an

alternative.

Remediation �Revised commit: 5ffb45b): The redundant < operator was

removed, and the recommendation to change the statement to if

(amount == 0) was implemented.

11

https://portal.hacken.io/App/Projects/Details/d2d07ac4-75cb-41ec-b570-df7fbb7b0a51/Finding/106766d7-f0bb-45fc-8f00-605816dc2402


F-2024-0462 - Missing Events - Info

Description: Events for critical state changes should be emitted for tracking actions

off-chain. 

It was observed that events are missing events in the following functions:

setTax()

setTreasury()

Assets:
contracts/SPAID.sol

Status: Fixed

Recommendations

Recommendation: Consider emitting missing events.

Remediation �Revised commit: a83ffc1�� The events were added and

emitted for the mentioned functions.

12

https://portal.hacken.io/App/Projects/Details/d2d07ac4-75cb-41ec-b570-df7fbb7b0a51/Finding/d36f468f-f12f-4fd6-8a57-96b9f1ae5a72


F-2024-0464 - Ine�cient Gas Usage in `withdraw()` and

`withdrawAllStaked()` Functions Due to Use of `transferFrom()` - Info

Description: In the contract, the withdraw() and withdrawAllStaked() functions

utilize the transferFrom() function to transfer tokens from the contract

to the user. However, the transferFrom() function includes additional

allowance checks, which are not necessary when transferring tokens from

the contract itself. These extra checks result in increased gas costs

compared to using the transfer() function.

Assets:
contracts/SPAID.sol

Status: Fixed

Recommendations

Recommendation: Modify the withdraw() and withdrawAllStaked() functions to use the

safeTransfer() function instead of transferFrom() for transferring

tokens from the contract to users. This change will eliminate unnecessary

allowance checks and reduce gas costs.

Remediation �Revised commit: 9478499�� The safeTransfer()

function from the SafeERC20 library was implemented.

13

https://portal.hacken.io/App/Projects/Details/d2d07ac4-75cb-41ec-b570-df7fbb7b0a51/Finding/b28b99c7-e5f1-48a2-9859-e073dd14a7c2


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

14



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

15

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details - Initial

Repository https://github.com/PAIDNetwork/ignition-sc-staking

Commit 235a9a33f30314861e9b8b63add9ace2f5d114ba

Whitepaper Not Provided

Requirements
https://github.com/PAIDNetwork/ignition-sc-

staking/blob/main/README.md

Technical

Requirements

https://github.com/PAIDNetwork/ignition-sc-

staking/blob/main/README.md

Scope Details -

Second

Repository https://github.com/PAIDNetwork/ignition-sc-staking

Commit d5fd4cb0c544b689c6688cba7d6a95e0ac8e2865

Whitepaper Not Provided

Requirements
https://github.com/PAIDNetwork/ignition-sc-

staking/blob/main/README.md

Technical

Requirements

https://github.com/PAIDNetwork/ignition-sc-

staking/blob/main/README.md

Scope Details - Third

Repository https://github.com/PAIDNetwork/ignition-sc-staking

Commit 9478499ec973e64001b89401ddb1a9edd002715b

Whitepaper Not Provided

Requirements
https://github.com/PAIDNetwork/ignition-sc-

staking/blob/main/README.md

16

https://github.com/PAIDNetwork/ignition-sc-staking
https://github.com/PAIDNetwork/ignition-sc-staking/blob/main/README.md
https://github.com/PAIDNetwork/ignition-sc-staking/blob/main/README.md
https://github.com/PAIDNetwork/ignition-sc-staking
https://github.com/PAIDNetwork/ignition-sc-staking/blob/main/README.md
https://github.com/PAIDNetwork/ignition-sc-staking/blob/main/README.md
https://github.com/PAIDNetwork/ignition-sc-staking
https://github.com/PAIDNetwork/ignition-sc-staking/blob/main/README.md


Scope Details - Third

Technical

Requirements

https://github.com/PAIDNetwork/ignition-sc-

staking/blob/main/README.md

Contracts in Scope

./contracts/SPAID.sol

17

https://github.com/PAIDNetwork/ignition-sc-staking/blob/main/README.md



