
Smart Contract Code
Review And Security
Analysis Report

Customer: Wooooo Coin

Date: 05 December, 2023

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank Wooooo Coin for allowing us to conduct a Smart Contract Security

Assessment. This document outlines our methodology, limitations, and results

of the security assessment.

Wooooo Coin is an innovative ERC20 token. It integrates advanced

functionalities like auto-liquidity, dynamic liquidity levels, and a distinct fee

system for various transaction types, all while embracing the flamboyant

essence of its wrestling legend namesake.

Platform: EVM

Language: Solidity

Tags: ERC20

Timeline: 16.11.2023 - 21.11.2023

Methodology: Link

Last review scope

Repository https://github.com/yodolph/Wooooo

Commit 5ddd0c2

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

10/10
Code quality score

0%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

8
Total Findings

7
Resolved

0
Acknowledged

1
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 0 0 0 0

High 1 1 0 0

Medium 3 2 1 0

Low 5 5 0 0

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
Wooooo Coin

Approved By Kaan Caglan | Senior SC Auditor at Hacken OÜ

Website N/A

Changelog
21.11.2023 – Preliminary Report
05.12.2023 – Final Report

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope...2
Introduction... 7
System Overview..7
Executive Summary..8
Risks...9
Findings.. 11

Critical...11
High...11

H01. Incorrect Reserve Order in priceBNB Function Leading to Erroneous
Price Calculations.. 11

Medium.. 14
M01. Underflow Error In Liquidity Addition Process......................................14
M02. Incorrect Reserve Token Order Assumption.. 15
M03. Highly Centralized Functionality..17

Low... 19
L01. Missing Zero Address Validation... 19
L02. Use of transfer or send Instead of call To Send Native Assets......... 20
L03. Incorrect Vested Token Tracking Leading to Operational
Inefficiencies..21
L04. Rigid Full-Sale Disqualification Threshold in vestedSell Function..... 22
L05. Hardcoded Zero Slippage in Liquidity Operations...............................24

Informational... 25
I01. Ownership Irrevocability Vulnerability in Smart Contract..................... 25
I02. Avoid Unnecessary Initializations Of Uint256 And Bool Variable To
0/false.. 26
I03. Custom Errors For Better Gas Efficiency.. 27
I04. Cache State Variable Array Length In For Loop................................... 27
I05. Immutable Keyword For Gas Optimization..28
I06. Unused State Variable...29
I07. Increments Can Be ‘unchecked’ In For Loops.. 29
I08. Style Guide Violation.. 30
I09. Redundant State Variables in launch Function......................................32
I10. Redundant Trading State Check in _transfer Function......................... 33
I11. Overuse of Identical WoooooEvent Strings in Multiple Contract
Functions...34

Disclaimers..34
Appendix 1. Severity Definitions... 36

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels.. 37
Impact Levels..37
Likelihood Levels..38
Informational...38

Appendix 2. Scope... 39

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ (Consultant) was contracted by Wooooo Coin (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

presents the findings of the security assessment of the Customer's smart

contracts.

System Overview

Wooooo coin is an innovative ERC20 token with the following contract:

● WoooooCoin - A contract that encapsulates various features for

liquidity management, fee structuring, and investor engagement. It

integrates auto-liquidity provisions, dynamic liquidity levels, and a

detailed fee system for different transaction types, all built on the robust

OpenZeppelin ERC20 standard.

Privileged roles

The Wooooo Coin contract, leveraging OpenZeppelin's Ownable standard,

ensures secure and restricted access to critical functions. The owner has

exclusive rights to:

● Set transaction fees for buying, selling, and transfers.

● Adjust liquidity thresholds and operational parameters.

● Manage vested tokens and associated payouts.

● Enable or disable key features like auto-liquidity and treasury

contributions.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

● NatSpec is sufficient.

● Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

● Best practices are followed.

● The code is structured and readable.

Test coverage

Code coverage of the project is 0% (branch coverage), with a mutation score of

0%.

● Coverage tool could not be run because there is not any test case.

Security score

As a result of the audit, the code does not contain any severity issues. The

security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 3.0.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The system users should acknowledge all the risks summed up in the risks

section of the report.

Risks
● The contract's design grants the owner extensive control over its

functions, including financial operations. This centralization poses a

significant risk, where the owner could potentially withdraw all assets,

jeopardizing user investments and trust. Such control undermines the

decentralization principle in blockchain, increasing the risk of misuse or

mismanagement.

● If a malicious actor obtains tokens before LP_STATE is set to true

(indicating readiness for transfers), they can exploit the _transfer

function's design. In scenarios where LP_STATE is false and neither the

sender nor the recipient is exempt, the function adds the recipient to the

deny list. A malicious actor, having acquired tokens prematurely, could

initiate minimal token transfers to various addresses. This would lead to

the unjust addition of these addresses to the deny list, effectively

blocking their ability to participate in future transfers and potentially

causing a widespread denial of service within the contract's ecosystem

● The implementation of the liquidation function in your smart contract

creates a systemic risk of unbalancing the token and native token (e.g.,

BNB) reserves in the liquidity pool. Each time this function is called, it

swaps a significant portion of tokens (938 out of 1000 parts) for the

native token, and then only a smaller fraction (62 out of 1000 parts) of

these tokens is paired back into the liquidity pool. This repeated process

incrementally increases the token reserve and decreases the native token

reserve in the pool. And it means the token price will decrease in time.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

● The Wooooo function, not utilized within the contract but relying on

block.timestamp for generating pseudo-randomness poses a risk of

predictability, making it unsuitable for crucial randomness-dependent

tasks. This predictability could lead to manipulation or exploitation,

especially if used in critical applications off-chain.

● sortReserves function will work smoothly as long as there will be more

USDC reserve than BNB and more WOO Token reserve than USDC in the

uniswap. Otherwise it will return in the wrong order and it will affect token

price.

● The contract's liquidity addition function is at risk of integer underflow if

the PAIR_TOKENS exceed the contract's initial balance. This issue may

cause the function to revert due to underflow, leading to failed

transactions when attempting to calculate liquidity values. While this

reversion prevents incorrect liquidity entries, it also indicates a

vulnerability in handling larger token pairings than the contract's balance,

potentially affecting its operational smoothness and user trust.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

No critical severity issues were found.

High

H01. Incorrect Reserve Order in priceBNB Function Leading to Erroneous Price
Calculations

Impact High

Likelihood Medium

The priceBNB function assumes that the first element returned by getReserves

is always the reserve for USDC. This assumption holds true as long as the USDC

address is smaller than the BNB address, ensuring that USDC appears first in

the pair. However, the contract includes a setCurrency function that allows the

contract owner to change the currency to another stablecoin like BUSD. Since

the BUSD address is larger than the BNB address, changing to BUSD would

result in incorrect reserve order in getReserves. This would lead to

miscalculations in the priceBNB function, significantly impacting the accuracy of

the priceUSD calculation and potentially causing substantial pricing errors in the

contract's operations.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

function priceInBNB() public view returns (uint256) {

(uint256 reserveToken, uint256 reserveBNB,) =

IPair(pair).getReserves();

return (reserveBNB* 1e18)/reserveToken;

}

Path: ./wooooo-coin-bnb-final.sol:

POC:

uint256 tokenPriceWithUSDC = woooCoin.priceUSD();

vm.startPrank(deployer);

CURRENCY = address(0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56); //

BUSD

woooCoin.setCurrency(CURRENCY);

vm.stopPrank();

uint256 tokenPriceWithBUSD = woooCoin.priceUSD();

console.log("Token price with USDC : %s, token price with BUSD:

%s",tokenPriceWithUSDC, tokenPriceWithBUSD);

Output:

Token price with USDC : 785835285899290864605, token price with

BUSD: 11584371928675559

Recommendation: To correct this issue and ensure that the first parameter in

the getReserves call is always USDC (or the equivalent stablecoin), the

priceBNB function should be modified to dynamically identify and correctly

assign the reserve values based on the addresses of the tokens involved. This

can be achieved by comparing the address of the stablecoin (e.g., USDC or

BUSD) with the address of BNB, and then accordingly assigning the reserve

values. Here is an example of how this can be implemented:

function priceBNB() public view returns (uint256) {

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

(uint256 reserve0, uint256 reserve1,) =

IPair(currency).getReserves();

uint256 reserveUSDC;

uint256 reserveBNB;

// Check which reserve is USDC/BUSD and which is BNB

if (CURRENCY < PAIR) {

reserveUSDC = reserve0;

reserveBNB = reserve1;

} else {

reserveUSDC = reserve1;

reserveBNB = reserve0;

}

return (reserveUSDC * 1e18) / reserveBNB;

}

This modification ensures that regardless of the address sizes of the stablecoin

and BNB, the reserves are correctly identified and used in calculations,

maintaining the accuracy of the priceUSD function.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Client has introduced a new function named `sortReserves`.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Medium

M01. Underflow Error In Liquidity Addition Process

Impact Medium

Likelihood Low

The Solidity code for a liquidity addition process is vulnerable to an integer

underflow error. This occurs when PAIR_TOKENS, the estimated tokens to be

paired with LP Tokens, exceeds the initial balance of the contract. In such a

scenario, the calculation of the final amount (i.e., uint256 amount =

address(this).balance - current;) will result in an underflow error, as it attempts

to subtract a larger number from a smaller one. This flaw arises due to the

calculation of current and amount without considering the potential for

PAIR_TOKENS to be greater than the initial balance.

Path: ./wooooo-coin-bnb-final.sol:

Recommendation: To mitigate this issue, a validation check should be

introduced before the liquidity addition process. This check should ensure that

the initial balance is greater than future possible PAIR_TOKENS. If this condition

is not met, the operation should not proceed. Implementing this check will

prevent the scenario where the subtraction results in an underflow. An example

implementation is:

uint256 initial = address(this).balance;

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

uint256 LP_TOKENS = (tokens * 62) / 1000;

uint256 PAIR_TOKENS = estimateEthOutAfterLiquify(LP_TOKENS);

//Estimate Tokens to be paired with LP Tokenswith the amount of

token after liquify

if(impact < impactLevel && initial > PAIR_TOKENS) {

// Continue with the liquidity addition process

}

Found in: 5ddd0c2

Status: Mitigated (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Client ensures that, initial balance value will always be bigger than

the possible PAIR_TOKENs amount. Due to this no control is required.

M02. Incorrect Reserve Token Order Assumption

Impact High

Likelihood Low

The function priceInBNB in the contract assumes that the first element returned

by the getReserves function of the Uniswap pair (IPair(pair).getReserves()) is

always the reserve of the Wooooo Coin token (reserveToken). This assumption

is potentially flawed because the order of reserves returned by getReserves

depends on the sorting of the token addresses in the pair. If the Wooooo Coin

token address is greater than the address of the paired token (such as WETH or

BNB), this assumption will lead to an incorrect calculation of the price in BNB.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

function priceInBNB() public view returns (uint256) {

(uint256 reserveToken, uint256 reserveBNB,) =

IPair(pair).getReserves();

return (reserveBNB* 1e18)/reserveToken;

}

Path: ./wooooo-coin-bnb-final.sol:

Recommendation: To mitigate this issue:

● Contract Initialization Check: Implement a validation check in the

contract's constructor to ensure that the contract is not initialized if the

Wooooo Coin token address is higher than the WETH/BNB address. This

approach prevents the deployment of the contract in a configuration that

could lead to incorrect price calculations.

● Adjust priceInBNB Function: Modify the priceInBNB function to

dynamically determine the correct order of reserves based on the token

addresses. This ensures the function accurately identifies which reserve

corresponds to the Wooooo Coin token and which to BNB, regardless of

their address order.

function priceInBNB() public view returns (uint256) {

(uint256 reserve0, uint256 reserve1,) =

IPair(pair).getReserves();

(uint256 reserveToken, uint256 reserveBNB) = address(this) <

pair ? (reserve0, reserve1) : (reserve1, reserve0);

return (reserveBNB * 1e18) / reserveToken;

}

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Client has introduced a new function named `sortReserves`.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

M03. Highly Centralized Functionality

Impact Medium

Likelihood Medium

The addInvestor function in its current form allows the contract owner to add

investors and allow them to receive treasury tokens at any time. This presents a

significant centralization risk, as the owner has unilateral control over the

distribution of tokens. Such centralization goes against the principles of

decentralization and fairness in blockchain systems. It could lead to potential

misuse or favoritism, where the owner might add investors selectively or in a

biased manner.

function addInvestor(address addr, uint256 tokens)external

onlyOwner{

vested[addr]=tokens;

vestedKey.push(addr);

}

Path: ./wooooo-coin-bnb-final.sol:

Recommendation: To mitigate this risk, it is recommended to implement a

mechanism that restricts the addition of new investors after a certain milestone,

such as the completion of the airdrop.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Remediation: Client has added a `require(!LP_STATE)` control to make sure the

owner won’t be able to add a new investor after airdrop.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low

L01. Missing Zero Address Validation

Impact Medium

Likelihood Low

The smart contract does not validate for the zero address (0x0) when handling
address parameters. This oversight could inadvertently trigger unintended
external calls to the 0x0 address, which might lead to undesired behaviors or
potential loss of funds.

Path: ./wooooo-coin-bnb-final.sol:

494: txn.marketing = addr;

497: txn.WoooooEnergy = addr;

500: txn.RicFlair = addr;

503: txn.network = addr;

530: payouts[investor]=addr;

540: CURRENCY = addr;

Recommendation: To safeguard against unintended interactions with the zero
address, it is advised to integrate the following best practices:

1. Validation Checks: Implement validation checks at the start of functions
or operations that involve address parameters. These checks should
confirm that the address is not the zero address (0x0) before proceeding
with further execution.

2. Reusable Modifier: Consider creating a reusable modifier such as
isNotZeroAddress(address _address), which can be applied to functions
to ensure that they are not passed or dealing with a zero address. This
not only enhances code reusability but improves clarity.

3. Error Handling: If an address validation fails, ensure that the contract
emits a clear and meaningful error message. This assists in debugging
and alerts users to potential issues with their transactions.

4. Testing: After implementing the above changes, it is crucial to conduct
comprehensive testing to ensure the smart contract behaves as expected
and does not interact with the zero address.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

By adhering to these recommendations, it is possible to reduce the risk
associated with unintended external calls to the 0x0 address and enhance the
robustness of smart contracts.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Client has added a modifier named `validAdress`.

L02. Use of transfer or send Instead of call To Send Native Assets

Impact Medium

Likelihood Low

The use of transfer() in the contracts may lead to unintended outcomes for the
native asset being sent to the receiver. The transaction will fail under the
following circumstances:

● The receiver address is a smart contract that does not implement a
payable function.

● The receiver address is a smart contract that implements a payable
fallback function using more than 2300 Gas units.

● The receiver address is a smart contract that implements a payable
fallback function requiring less than 2300 Gas units but is called through
a proxy, causing the call's Gas usage to exceed 2300.

● In addition, using a Gas value higher than 2300 might be mandatory for
certain multi-signature wallets.

Path: ./wooooo-coin-bnb-final.sol:

payable(payouts[investor]).transfer(payment);

payable(investor).transfer(payment);

payable(txn.marketing).transfer((amount*ops.marketing)/1000);

payable(txn.WoooooEnergy).transfer((amount*ops.WoooooEnergy)/1000);

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

payable(txn.RicFlair).transfer((amount*ops.RicFlair)/1000);

payable(txn.network).transfer((amount*ops.network)/1000);

payable(owner()).transfer(amount);

payable(msg.sender).transfer(amount);

Recommendation: Use call() function instead of transfer() for the native token
transfers.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

86c25361784d3b5f098c9157ff733edfa78d7664fa17b5d51e80b820)

L03. Incorrect Vested Token Tracking Leading to Operational Inefficiencies

Impact Medium

Likelihood Low

The function vestedSell is designed to track the sale of vested tokens by an
investor. However, there is a logical flaw in its implementation. The function
increases sold[seller] by amount and checks if sold[seller] equals vested[seller].
The issue arises when an investor acquires additional tokens from external
sources and sells them. In this scenario, sold[seller] can exceed vested[seller],
resulting in a condition where the soldout[seller] flag is never set to true, and
the ops variable is not updated as intended. This flaw can prevent the correct
execution of key operational logic dependent on the ops variable.

Path: ./wooooo-coin-bnb-final.sol:

Recommendation: To address this issue, it is recommended to restrict
investors from receiving or buying additional tokens beyond their vested
amount. This can be achieved by adding checks in the token transfer logic to
ensure that only vested investors can receive or buy tokens. These checks will
enforce that only tokens from the vested pool are sold, ensuring the accuracy of
sold[seller].

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Client solved this issue with adding isInvestor control to _transfer

function under else if(sender == pair) and else{ parts.

L04. Rigid Full-Sale Disqualification Threshold in vestedSell Function

Impact Medium

Likelihood Medium

In the current implementation of the vestedSell function, an investor is marked
as 'sold out' and becomes ineligible for treasury fees as soon as they sell 100%
of their vested tokens. This all-or-nothing approach might be overly strict,
potentially penalizing investors who have sold a significant portion but not all of
their tokens. This could discourage active trading or selling of tokens, as
investors might be reluctant to sell their holdings completely due to fear of
losing all treasury benefits.

function vestedSell(address seller,uint256 amount)private{

sold[seller]+=amount; //Track vested tokens being sold

if(sold[seller]==vested[seller]){

soldout[seller]=true;

out+=1;

if(out>=vestedKey.length){

ops = OPS(0, 500, 125, 125, 250);

}

}

}

Path: ./wooooo-coin-bnb-final.sol:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: To create a more balanced and incentivized structure, it's
advisable to introduce a threshold less than 100% for marking an investor as
'sold out'. For instance, you could set a threshold where an investor is
considered 'sold out' if they sell a certain percentage (e.g., 80%) of their vested
tokens. This threshold can be determined based on the contract's economic
model and desired investor behavior. Adjusting the threshold allows for more
flexibility and can encourage investors to remain active in the market without
the fear of immediate total disqualification from treasury fees. This modification
would involve changing the condition in the if statement to check whether
sold[seller] is greater than or equal to a certain percentage of vested[seller]. For
example:

uint256 thresholdPercentage = 80; // Example percentage

uint256 thresholdAmount = vested[seller] * thresholdPercentage /

100;

if (sold[seller] >= thresholdAmount) {

soldout[seller] = true;

// ... rest of the code

}

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Client solved this issue with adding vestedMin control.

for (uint32 i; i < len;) {

uint256 vestedMin = vested[vestedKey[i]]/4;

uint256 bal = balanceOf(vestedKey[i]);

if(vestedKey[i]!=seller && !soldout[vestedKey[i]] &&

bal>=vestedMin){

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

L05. Hardcoded Zero Slippage in Liquidity Operations

Impact Medium

Likelihood Low

In the specified contract, particularly within the functions for adding liquidity

(addLiquidityETH) and swapping tokens

(swapExactTokensForETHSupportingFeeOnTransferTokens), a hardcoded value

of 0 is used for the slippage parameter. This presents a potential issue as zero

slippage is often unrealistic in a live trading environment. Hardcoded slippage

values can lead to failed transactions in cases where the actual price movement

exceeds the specified slippage limit, especially in volatile market conditions.

This can result in an inability to execute swaps or add liquidity at critical times,

potentially impacting the contract's effectiveness and user experience.

340: router.addLiquidityETH{ value: _pair

}(address(this), _tokens, 0, 0, owner(), block.timestamp); //

@audit-issue

355:

router.swapExactTokensForETHSupportingFeeOnTransferTokens(

356: TOKENS,

357: 0, // @audit-issue

358: path,

359: address(this),

360: block.timestamp

361:);

Path: ./wooooo-coin-bnb-final.sol:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: To resolve the issue of hardcoded zero slippage in liquidity

operations, the contract should incorporate three state variables: uint256

minSwapAmount, uint256 minLiquidityAddNativeAmount, and uint256

minLiquidityAddTokenAmount. These variables will represent minimum

acceptable amounts for swapping and adding liquidity for both native and token

assets. A setter function, accessible only to the contract owner, can be

implemented to adjust these values as needed. The

swapExactTokensForETHSupportingFeeOnTransferTokens function will utilize

minSwapAmount, while addLiquidityETH will use minLiquidityAddNativeAmount

and minLiquidityAddTokenAmount. This approach allows for more precise and

adaptable control over slippage in different transaction types, enhancing the

contract's flexibility and reducing the risk of failed transactions due to market

volatility.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

86c25361784d3b5f098c9157ff733edfa78d7664fa17b5d51e80b820)

Informational

I01. Ownership Irrevocability Vulnerability in Smart Contract

The smart contract under inspection inherits from the Ownable library, which
provides basic authorization control functions, simplifying the implementation of
user permissions. Given this, once the owner renounces ownership using the
renounceOwnership function, the contract becomes ownerless. As evidenced in
the provided transaction logs, after the renounceOwnership function is called,
attempts to call functions that require owner permissions fail with the error
message: "Ownable: caller is not the owner."

This state renders the contract's adjustable parameters immutable and
potentially makes the contract useless for any future administrative changes
that might be necessary.

Path: ./wooooo-coin-bnb-final.sol:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

//ERC20 is the same as BEP20

contract WoooooCoin is ERC20, Ownable, ReentrancyGuard {

Recommendation: To mitigate this vulnerability:

1. Override the renounceOwnership function to revert transactions: By
overriding this function to simply revert any transaction, it will become
impossible for the contract owner to unintentionally (or intentionally)
render the contract ownerless and thus immutable.

2. Implement an ownership transfer function: While the Ownable library does
provide a transferOwnership function, if this is not present or has been
removed from the current contract, it should be re-implemented to ensure
there is a way to transfer ownership in future scenarios.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

I02. Avoid Unnecessary Initializations Of Uint256 And Bool Variable To 0/false

In Solidity, it is common practice to initialize variables with default values when
declaring them. However, initializing `uint256` variables to `0` and
`bool`variables to `false` when they are not subsequently used in the code can
lead to unnecessary Gas consumption and code clutter. This issue points out
instances where such initializations are present but serve no functional purpose.

Path: ./wooooo-coin-bnb-final.sol:

412: uint256 totalShares = 0;

414: for (uint256 i = 0; i < vestedKey.length; i++) {

420: for (uint256 i = 0; i < vestedKey.length; i++) {

Recommendation: It is recommended not to initialize integer variables to 0 to
and boolean variables to false to save some Gas.

Found in: 5ddd0c2

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

I03. Custom Errors For Better Gas Efficiency
Using custom errors instead of revert strings can significantly reduce Gas costs,
especially when deploying contracts. Prior to Solidity v0.8.4, revert strings were
the only way to provide more information to users about why an operation failed.
However, revert strings are expensive, and it is difficult to use dynamic
information in them. Custom errors, on the other hand, were introduced in
Solidity v0.8.4 and provide a gas-efficient way to explain why an operation
failed.

Path: ./wooooo-coin-bnb-final.sol:

require(_address != address(0), "Invalid address");

require(fees.treasury + fees.lp <= 250, "Cannot exceed 25%");

require(amount != 0, "Must.Not.Be.Zero");

require(!deny[recipient], "Snipe.Attacker.Not.Permitted");

require(enabled, "Trading.Disabled");

require(amount <= max.buy, "Amount.Buy.Exceeded");

require(balanceOf(recipient) + amount <= max.addr, "Balance.Exceeded");

require(amount <= max.sell, "Amount.Sell.Exceeded");

require(balanceOf(recipient) + amount <= max.addr, "Balance.Exceeded");

require(!LP_STATE && !enabled && !open, "Trading.Already.Launched");

Recommendation: It is recommended to use custom errors instead of revert
strings to reduce Gas costs, especially during contract deployment. Custom
errors can be defined using the error keyword and can include dynamic
information.

Found in: 5ddd0c2

Status: Acknowledged

I04. Cache State Variable Array Length In For Loop
Failing to cache the array length when iterating through arrays in Solidity can
have significant performance and Gas cost implications. In Solidity, array lengths
can change during execution due to external calls or storage modifications.
When the array length is not cached before entering a loop, it is recomputed
with each iteration, leading to unnecessary Gas consumption and potentially
making the contract vulnerable to reentrancy attacks.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Path: ./wooooo-coin-bnb-final.sol:

414: for (uint256 i = 0; i < vestedKey.length; i++) {

420: for (uint256 i = 0; i < vestedKey.length; i++) {

Recommendation: Accessing a state variable like vestedKey directly within a
loop in a smart contract can lead to efficiency and cost issues, especially if the
array grows large. Each read operation from a state variable in Ethereum
consumes Gas, and in a loop, this can quickly become expensive. Instead of
accessing vestedKey.length directly in the loop condition, store it in a local
variable. This reduces the number of state reads.

uint256 length = vestedKey.length;

for (uint256 i = 0; i < length; i++) {

// ...

}

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

I05. Immutable Keyword For Gas Optimization
There are variables that do not change, so they can be marked as immutable to
greatly improve the Gas costs.

Path: ./wooooo-coin-bnb-final.sol:

64: uint256 public supply;

88: IUniswapV2Router02 public router;

89: address public pair;

91: address public ROUTER;

92: address public PAIR;

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Recommendation: Consider marking state variables as an immutable that never
changes on the contract.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

Remediation: Changed to immutable variables that can be changed.

I06. Unused State Variable

There are state variables which are declared but not used in any function. This
might increase the contract's Gas usage unnecessarily.

Path: ./wooooo-coin-bnb-final.sol:

address public treasury

Recommendation: Remove redundant variables to save Gas on deployment and
increase code quality.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

I07. Increments Can Be ‘unchecked’ In For Loops

Newer versions of the Solidity compiler will check for integer overflows and

underflows automatically. This provides safety but increases Gas costs.

When an unsigned integer is guaranteed to never overflow, the unchecked

feature of Solidity can be used to save Gas costs.

A common case for this is for-loops using a strictly-less-than comparison in

their conditional statement, e.g.:

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

uint256 length = someArray.length;

for (uint256 i; i < length; ++i) {

}

In cases like this, the maximum value for length is 2**256 - 1. Therefore, the

maximum value of i is 2**256 - 2 as it will always be strictly less than length.

This example can be replaced with the following construction to reduce Gas

costs:

for (uint i; i < length;) {

// do something that doesn't change the value of i

unchecked {

++i;

}

}

Path: ./wooooo-coin-bnb-final.sol:

414: for (uint256 i = 0; i < vestedKey.length; i++) {

420: for (uint256 i = 0; i < vestedKey.length; i++) {

Recommendation: Use unchecked math to block overflow / underflow check to

save Gas.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

I08. Style Guide Violation

The provided projects should follow the official guidelines.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Inside each contract, library or interface, use the following order:

1. Type declarations

2. State variables

3. Events

4. Modifiers

5. Functions

Functions should be grouped according to their visibility and ordered:

1. constructor

2. receive function (if exists)

3. fallback function (if exists)

4. external

5. public

6. internal

7. private

Within a grouping, place the view and pure functions last.

It is best practice to follow the Solidity naming convention. This will increase

overall code quality and readability.

Path: ./*

Recommendation: follow the official Solidity guidelines.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.soliditylang.org/en/v0.8.17/style-guide.html
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I09. Redundant State Variables in launch Function

The launch function in smart contract sets three state variables - enabled, open,

and LP_STATE - to TRUE. All these variables are initially FALSE and lack distinct

methods for individual state changes. This redundancy is inefficient as each

variable update consumes Gas, and they all represent the same operational

state of the contract. This design leads to unnecessary Gas usage and adds

complexity without providing distinct functional benefits.

Path: ./wooooo-coin-bnb-final.sol:

function launch()external onlyOwner{

require(!LP_STATE && !enabled && !open, "Trading.Already.Launched");

enabled = true;

open = true;

LP_STATE = true;

emit WoooooEvent("Wooooo!");

}

Recommendation: To improve Gas efficiency and simplify the contract's logic,

consider consolidating these three state variables into a single variable that

represents the operational state. This single variable could be named to clearly

indicate the contract's state (e.g., isTradingActive or contractState). The launch

function would then only need to update this one variable, significantly reducing

gas costs associated with multiple state changes. Additionally, this change

would make the contract's code cleaner and more maintainable, as it reduces

the potential for errors or confusion arising from having multiple variables that

serve the same purpose.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I10. Redundant Trading State Check in _transfer Function

The _transfer function includes a redundant condition check if(!exempt[sender]

&& !exempt[recipient]){require(enabled, "Trading.Disabled");}. This check is

unnecessary because the function is already gated by the LP_STATE being true,

and the launch function simultaneously sets LP_STATE, enabled, and open to

TRUE. Given that these variables are always updated together, the state

represented by enabled is redundant when LP_STATE is already checked,

leading to inefficiency in contract execution.

Path: ./wooooo-coin-bnb-final.sol:

function _transfer(address sender,address recipient,uint256 amount) internal

override validAddress(sender) validAddress(recipient){

require(amount != 0, "Must.Not.Be.Zero");

require(!deny[recipient], "Snipe.Attacker.Not.Permitted");

if(LP_STATE){

if(!exempt[sender] && !exempt[recipient]){require(enabled,

"Trading.Disabled");}

Recommendation: To streamline the _transfer function and reduce gas costs,

it's recommended to remove the redundant check for the enabled state. Since

LP_STATE adequately represents the trading readiness of the contract, the

additional condition involving enabled is unnecessary. Simplifying this check will

make the contract more gas-efficient and easier to understand, maintaining the

necessary security and functional checks without the overhead of redundant

state validations.

Found in: 5ddd0c2

Status: Fixed (Revised file sha3sum:

8d5bea234ed2f294c85eb7aaece9e9c86688c704b209abc13dc38b44)

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I11. Overuse of Identical WoooooEvent Strings in Multiple Contract Functions

The WoooooEvent with the string "Wooooo!" is emitted in several different

contexts within the contract, including in the _transfer, constructor, launch, and

setCurrency functions. This repeated use of the same event string across

multiple, functionally distinct parts of the contract can lead to confusion. It

becomes challenging to distinguish the specific function that triggered the

event when analyzing logs or debugging, as the event message does not

provide context or specificity about its source or the nature of the state change.

Path: ./wooooo-coin-bnb-final.sol:

emit WoooooEvent("Wooooo!");

Recommendation: To enhance clarity and debugging efficacy, it is

recommended to refactor the event messages associated with WoooooEvent

emissions. Each event string should be unique and descriptive of the context in

which it is emitted. For instance, in the launch function, the event could be

"Launch: Trading Started", while in setCurrency, it could be "Currency Set:

[Details]”. These tailored event messages will provide clearer insights into

contract behavior, aid in tracking the contract’s activities, and improve overall

maintainability.

Found in: 5ddd0c2

Status: Acknowledged

Disclaimers
Hacken Disclaimer

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Initial review scope

Repository https://github.com/yodolph/Wooooo

Commit 5ddd0c2

Whitepaper Not provided

Requirements Not provided

Technical
Requirements Not provided

Contracts in Scope

wooooo-coin-bnb-final.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Second review scope

Repository Not provided

Commit Not provided

Whitepaper Not provided

Requirements Not provided

Technical
Requirements Not provided

Contracts in Scope

File: wooooo-coin-bnb-final.sol
SHA3:
86c25361784d3b5f098c9157ff733edfa78d7664fa17b5d51e80b820

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

