
Smart Contract Code

Review And Security

Analysis Report

Customer: BlockSquare

Date: 20/02/2024



We express our gratitude to the BlockSquare team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

The Blocksquare Revenue Distribution System is an innovative smart contract ecosystem, specifically

designed for managing and distributing revenue in a property management or real estate investment

context. 

Platform: EVM

Language: Solidity

Tags: Airdrop; Proxy; Upgradable

Timeline: 24/01/2024 - 20/02/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/blocksquare/blocksquare-contracts

Commit 61b77c4

2

https://hackenio.cc/sc_methodology
https://github.com/blocksquare/blocksquare-contracts


Audit Summary

10/10 10/10 96.15% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.9/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 4 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 2

Vulnerability Status

F-2024-0570 - Inadequate Constructor Initialization in Upgradeable Contract Fixed

F-2024-0575 - Checks-Effects-Interactions Pattern Violation Fixed

F-2024-0579 - Incompatibility with Non-Standard ERC20 Token Interfaces Fixed

F-2024-0583 - Token Address Alteration in Revenue Distribution Contract Fixed

3

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/92b4d31c-ad68-45a4-816c-eddaa7ce0550
https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/04d71a13-e728-4d8c-9a1f-1768f9b74e3a
https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/53be4315-a8da-4a12-a01d-fd2505b59a3e
https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/db24c1fc-962b-4bf0-aeef-12e87d383f01


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for BlockSquare

Audited By Ivan Bondar

Approved By Grzegorz Trawinski

Website https://blocksquare.io/

Changelog 26/01/2024 - Preliminary Report

20/02/2024 - Final Report

4

https://blocksquare.io/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 17

Disclaimers 26

Appendix 1. Severity Definitions 27

Appendix 2. Scope 28



System Overview

The Blocksquare Revenue Distribution System is an innovative smart contract ecosystem built on

Ethereum, specifically designed for managing and distributing revenue in a property management or

real estate investment context. It centralizes the revenue management process for property-related

investments, offering a transparent and efficient way to handle revenue distributions and claims.

The files in the scope: 

RevenueDistribution.sol - this contract is central to the system, facilitating various functionalities:

Revenue Tracking and Distribution:

Manages revenue associated with different properties (PropTokens).

Tracks individual and total revenue amounts for properties and users.

Enables the addition of revenue for properties and its distribution among multiple users.

Revenue Claiming:

Provides functions for users to claim revenue for specific properties or multiple

properties.

Supports claiming for individual and multiple wallets.

Data and Token Integration:

Interacts with external contracts/interfaces indicated by _data (for permissions) and

_tokenAddress (for token transfers).

RevenueDistributionProxy.sol - a Transparent Upgradeable Proxy that serves as a flexible and

upgradable front for the RevenueDistribution contract

Privileged roles

RevenueDistribution:

Contract Owner:

Has the authority to transfer ownership and renounce ownership.

Can update the data proxy (_data) address, affecting the system's core functionalities.

Authorized Users:

Users with special permissions (verified through the _data contract) can add revenue to

the system.

This role is restricted to system administrators or trusted community partners.

RevenueDistributionProxy:

Proxy Admin:

Responsible for managing and executing upgrades to the RevenueDistribution contract.

Holds significant power over the proxy contract, with the ability to change the business

logic address (logic) and initialize new logic contracts.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements have some gaps:

Project overview is detailed

The roles within the system are described.

Use cases are described and detailed.

For each contract all futures are described

All interactions are described.

Technical description is robust:

Run instructions are provided.

Technical specification is provided.

NatSpec is sufficient.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 96.15% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is present.

Interactions by several users are tested.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 2 low severity issues.

All issues were fixed in the remediation part of this audit, leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.9. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Upgradability and Future Version Modifications:

The contract's upgradable nature means that its implementation can be modified in future

versions. This flexibility allows for necessary updates and improvements but also introduces

uncertainty for users regarding future changes in the contract's behavior and rules. Users

should stay informed about any contract upgrades and understand their implications.

Criticality of Accurate Revenue Allocation in addRevenue Function:

The addRevenue function plays a crucial role in distributing revenues accurately among

users. It requires precise input parameters to ensure fair and correct allocation. Incorrect or

manipulated inputs can lead to improper revenue distribution, affecting the trust and fairness

of the system. Users and community partners must exercise due diligence in verifying the

accuracy of the input data.

Changeability of Access Control via RevenueDistributionHelpers _data:

The contract allows for the modification of the RevenueDistributionHelpers _data, which

controls access permissions, particularly for the addRevenue function. Changes to this

helper can alter who has the authority to distribute revenues, potentially impacting the

consistency and integrity of revenue allocations. Users should be aware of any changes to

these access controls and understand their potential impact on revenue distribution

practices.

Solidity Version Compatibility and Cross-Chain Deployment:

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the

PUSH0 (0x5f) opcode. This opcode is currently supported on the Ethereum mainnet but may

not be universally supported across other blockchain networks. Consequently, deploying the

contract on chains other than the Ethereum mainnet, such as certain Layer 2 (L2) chains or

alternative networks, might lead to compatibility issues or execution errors due to the lack of

support for the PUSH0 opcode. In scenarios where deployment on various chains is

anticipated, selecting an appropriate Ethereum Virtual Machine (EVM) version that is widely

supported across these networks is crucial to avoid potential operational disruptions or

deployment failures.

8



Findings

Vulnerability Details

F-2024-0579 - Incompatibility with Non-Standard ERC20 Token

Interfaces - Medium

Description: The RevenueDistribution contract is designed to manage and distribute

revenue among property owners and users. It relies on the

RevenueDistributionHelpers interface for critical operations, including

permission checks (canDistributeRent) and token transfers

(transfer, transferFrom).

The contract uses the RevenueDistributionHelpers interface for ERC20

token transfer operations. However, not all ERC20 tokens adhere to the

same standards for return values, particularly for transfer and

transferFrom methods. For example, USDT and some other tokens do

not return a boolean value upon successful transfer. 

Affected code: 

function addRevenue(address property, address[] memory users, uint25

6[] memory amount, uint256 from, uint256 to) public {

//...

require(RevenueDistributionHelpers(_tokenAddress).transferFrom(msg.s

ender, address(this), amountToPay));

//...

}

function _claimRevenue(address property, address wallet) private {

//...

RevenueDistributionHelpers(_tokenAddress).transfer(wallet, revenue);

//...

}

This deviation could cause addRevenue function to fail or behave

unexpectedly due to their reliance on the return value for successful

execution and limits the contract's flexibility in supporting a broader range

of ERC20 tokens without requiring upgrades or redeployment.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Classification

Severity: Medium

9

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/53be4315-a8da-4a12-a01d-fd2505b59a3e


Impact: Likelihood [1-5]: 5

Impact [1-5]: 3

Exploitability [1,2]: 2

Complexity [0-2]: 0

Final Score: 2.5 [Medium]

Recommendations

Recommendation: To ensure compatibility with both standard and non-standard ERC20

tokens:

Modify the RevenueDistributionHelpers interface to remove transfer

and transferFrom methods. Focus this interface solely on

permission-related functionality (canDistributeRent).

Implement OpenZeppelin's SafeERC20 library for token transfer

operations in the contract. SafeERC20 provides wrapper functions

that handle the variability in return values and throw exceptions in

case of failed transfers.

Replace direct calls to transfer and transferFrom with

SafeERC20's safe transfer methods (safeTransfer,

safeTransferFrom) in addRevenue and _claimRevenue functions.

Remediation (Revised commit: 61b77c4) : The previously identified issue

with the RevenueDistribution contract's dependency on the

RevenueDistributionHelpers interface for ERC20 token transfers was

addressed. The interface no longer includes transfer and

transferFrom methods, ensuring compatibility with a broader range of

ERC20 tokens. Additionally, the contract now utilizes OpenZeppelin's

SafeERC20 library, replacing direct token transfer calls with

safeTransfer and safeTransferFrom in the addRevenue and

_claimRevenue functions.

10



F-2024-0583 - Token Address Alteration in Revenue Distribution

Contract - Medium

Description: The RevenueDistribution contract contains functions addRevenue and

_claimRevenue which interact with a token address stored in the

contract. The token address is used for transferring funds and calculating

revenues.

The inclusion of the setToken function in the contract enables the token

address to be altered by the contract owner. This flexibility could lead to

scenarios where the token address is inadvertently or maliciously

changed, potentially to a token of lesser value or an entirely different

nature than initially intended.

function setToken(address token) public onlyOwner {

_tokenAddress = token;

}

Altering the token address could have several unintended consequences:

Blocked Revenue Claims: If changed to a non-existent or non-

functional token, users might be unable to claim their rightfully earned

revenues.

Devaluation of Rewards: Switching to a less valuable token could

reduce the actual value of users' earnings.

System Integrity: An unexpected change in the token address can

damage the platform's credibility and trust among users and

Community Partners.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 5

Exploitability [1,2]: 2

Complexity [0-2]: 0

Final Score: 2.5 [Medium]

11

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/db24c1fc-962b-4bf0-aeef-12e87d383f01


Recommendations

Recommendation: It is recommended to entirely remove the setToken functionality from the

RevenueDistribution contract. This approach significantly reduces the risk

associated with altering the token address post-deployment, thereby

maintaining the integrity and expected behavior of the contract.

If the system's design requires the RevenueDistribution contract to work

with multiple tokens, a redesign of the contract should be considered.

This redesign would enable the contract to handle multiple asset

distributions securely and efficiently, rather than relying on a single token

address that can be changed.

Remediation (Revised commit: 61b77c4) : The setToken function, which

allowed the token address to be changed in the RevenueDistribution

contract, was removed. This change ensures a fixed token address,

eliminating risks associated with altering the token post-deployment and

maintaining the integrity and reliability of the revenue distribution system.

12



F-2024-0570 - Inadequate Constructor Initialization in Upgradeable

Contract - Low

Description: In the RevenueDistribution contract, which is designed to be upgradeable,

the constructor is implemented with the initializer modifier. However,

for upgradeable contracts, the best practice is to use

_disableInitializers in the constructor to prevent the base

contract's constructor from being called more than once in the proxy

pattern.

Affected Code:

/// @dev Initialize contract params with `initialize` function behin

d a proxy

constructor() initializer {}

Neglecting to use _disableInitializers in the constructor could

potentially lead to initialization issues in upgradeable contracts. While this

does not pose an immediate security threat, it deviates from standard

best practices and might lead to unexpected behavior, especially when

the contract undergoes future upgrades or changes.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 2

Exploitability [1,2]: 2

Complexity [0-2]: 0

Final Score: 1.8 [Low]

Recommendations

Recommendation: To align with best practices for upgradeable contracts, it is recommended

to replace the initializer modifier in the constructor with a call to

_disableInitializers. This change ensures the correct initialization

13

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/92b4d31c-ad68-45a4-816c-eddaa7ce0550


pattern for upgradeable contracts and maintains consistency with widely

accepted standards.

Code Snippet:

constructor() {

_disableInitializers();

}

Remediation (Revised commit: 61b77c4) : The initializer modifier was

removed, and _disableInitializers() is now invoked within the

constructor body.

External References:
Openzeppelin

14

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/41909dd383172e31b538f0608655d1449e2a1d96/contracts/proxy/utils/Initializable.sol#L43


F-2024-0575 - Checks-Effects-Interactions Pattern Violation - Low

Description: The RevenueDistribution contract manages revenue allocation and

distribution for a property token system. The _claimRevenue function,

integral to this process, handles the internal logic for transferring claimed

revenue to a user's wallet.

In the _claimRevenue function, the contract interacts with an external

token contract to transfer funds before updating its internal state. This

order of operations violates the Checks-Effects-Interactions pattern and

exposes the function to reentrancy attacks.

function _claimRevenue(address property, address wallet) private {

uint256 revenue = _revenueAmount[property][wallet];

RevenueDistributionHelpers(_tokenAddress).transfer(wallet, revenue);

_revenueAmount[property][wallet] = 0;

_totalRevenue[wallet] = _totalRevenue[wallet] - revenue;

emit RevenueClaimed(property, wallet, revenue, block.timestamp);

}

The RevenueDistribution contract is designed for use with stablecoins like

DAI, USDC, and USDT, which are typically safe from triggering reentrant

calls. However, caution is advised for potential future use with different

tokens. Extending the contract's usage to other token types might lead to

reentrancy risks, potentially resulting in unintended behavior or

vulnerabilities within the contract.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 4

Exploitability [1,2]: 2

Complexity [0-2]: 1

Final Score: 2.0 [Low]

Recommendations

Recommendation: Reorder the function to follow the Checks-Effects-Interactions pattern:

15

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/04d71a13-e728-4d8c-9a1f-1768f9b74e3a


1. Validate conditions.

2. Update state variables.

3. Interact with external contracts.

Revised Function:

function _claimRevenue(address property, address wallet) private {

uint256 revenue = _revenueAmount[property][wallet];

_revenueAmount[property][wallet] = 0;

_totalRevenue[wallet] -= revenue;

RevenueDistributionHelpers(_tokenAddress).transfer(wallet, revenue);

emit RevenueClaimed(property, wallet, revenue, block.timestamp);

}

Remediation (Revised commit: 61b77c4) :  The _claimRevenue function

in the RevenueDistribution contract was restructured. The transfer

operation is now executed at the end of the function, after state variables

update.

16



Observation Details

F-2024-0569 - Potential Loss of Ownership Control in Contract Using

OwnableUpgradeable - Info

Description: The RevenueDistribution contract employs OwnableUpgradeable from

OpenZeppelin for ownership management.

If ownership is mistakenly transferred, it may result in the irrevocable loss

of control over the contract. Any function guarded by the onlyOwner

modifier would become inaccessible to the original owner, effectively

freezing critical administrative functionalities.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: Integrate Ownable2StepUpgradeable, which implements a two-step

ownership transfer process. This requires the new owner to actively

accept ownership, adding an additional layer of security against

accidental transfers.

Remediation (Revised commit: 61b77c4) : The RevenueDistribution

contract was updated to use Ownable2StepUpgradeable instead of

OwnableUpgradeable. This change introduces a two-step ownership

transfer process, enhancing security against unintentional ownership

changes.

17

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/88c41ea4-dda9-4c3f-8576-7a94605a05e6


F-2024-0571 - Missing Events in Key Functions - Info

Description: The RevenueDistribution contract lacks event emissions in two critical

owner-only functions: setDataProxy and setToken. These functions are

used to update the addresses of crucial contract dependencies – the data

proxy and token contracts, respectively. 

The absence of events in these functions means that there is no on-chain

traceability or transparency when these addresses are updated.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: To enhance transparency and traceability, it is recommended to emit

events whenever the data proxy and token contract addresses are

updated. This will allow users and external services to monitor and react

to changes.

Remediation (Revised commit: 61b77c4) : Introduced the

DataProxyChanged event within the setDataProxy function.

Additionally, the setToken function was completely removed from the

contract.

18

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/b106ba7e-1d1b-484d-9c19-8f0feb45f912


F-2024-0572 - `event` Declared But Not Emitted - Info

Description: It was identified that RevenueSent event is declared but not utilized in

any of the solution's functionality. Having unused event declarations

consumes additional Gas during the deployment.

event RevenueSent(address indexed property, address indexed user, ui

nt256 amount, uint256 time);

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: Consider removing the unused event declaration to optimize the contract

and enhance clarity. If there is an intent for this event to be part of certain

operations, ensure it is emitted appropriately. Otherwise, for the sake of

clean and efficient code, it is advisable to remove any unused

declarations.

Remediation (Revised commit: 61b77c4) : The RevenueSent event, which

was previously declared but unused in the contract's operations, was

removed.

19

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/3280e9f6-d38c-4e31-ba12-086b937acba3


F-2024-0573 - Function Parameter "owner" Shadows Function

owner() from OwnableUpgradeable Contract - Info

Description: In the RevenueDistribution contract's initialize function, the

parameter owner shadows the owner() function inherited from the

OwnableUpgradeable contract. Shadowing occurs when a local identifier

(variable, parameter, etc.) in a scope has the same name as an identifier in

an outer scope, potentially leading to confusion and errors in

understanding the code.

This issue does not pose a direct security risk, but it can lead to

readability and maintainability issues.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: Rename the owner parameter in the initialize function to a distinct

name that does not conflict with any inherited functions or state variables.

Remediation (Revised commit: 61b77c4) : The initialize function's

parameter previously named owner was renamed to ownerAddress,

resolving the shadowing issue with the inherited owner() function from

the OwnableUpgradeable contract.

20

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/783a4e15-b6b2-4e88-b1d3-d8508cb3e0fd


F-2024-0574 - Public Functions That Should Be External - Info

Description: Functions that are meant to be exclusively invoked from external sources

should be designated as external rather than public. This is essential

to enhance both the gas efficiency and the overall security of the

contract.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: To optimize gas usage and improve code clarity, declare functions that are

not called internally within the contract and are intended for external

access as external rather than public. This ensures that these

functions are only callable externally, reducing unnecessary gas

consumption and potential security risks.

Affected functions in the RevenueDistribution contract:

function addRevenue(address property, address[] calldata users, uint

256[] calldata amount, uint256 from, uint256 to) external { ... }

function claimRevenuesForWalletForProperty(address wallet, address p

roperty) external { ... }

function claimRevenuesForWalletForMultipleProperties(address wallet,

address[] calldata properties) external { ... }

function pushRevenueToUser(address property, address[] calldata wall

ets) external { ... }

function setDataProxy(address dataProxy) external onlyOwner { ... }

function setToken(address token) external onlyOwner { ... }

function pendingRevenue(address property, address user) external vie

w returns (uint256) { ... }

function totalPendingRevenue(address user) external view returns (ui

nt256) { ... }

function getAverageMonthlyPayout(address property) external view ret

urns (uint256) { ... }

function totalPayout(address property) external view returns (uint25

6) { ... }

Remediation (Revised commit: 61b77c4) : Mentioned functions visibility in

the RevenueDistribution contract was updated to external.

21

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/0ee1233d-a1c6-4d5a-bb5b-2778f3e4a92a


F-2024-0576 - Missing checks for `address(0)` - Info

Description: The RevenueDistribution contract lacks essential validations to check for

the zero address (address(0)) in several functions. The zero address

check is a fundamental security measure in smart contracts to prevent

operations involving uninitialized or default addresses.

Affected functions:

The initialize function does not validate the data and token

addresses.

The addRevenue function allows adding revenue without validating

the user addresses in the users array and property address,

potentially causing revenue allocation to the zero address.

The _claimRevenue function, called by

claimRevenuesForWalletForProperty,

claimRevenuesForWalletForMultipleProperties, and

pushRevenueToUser, can potentially be called for address(0).

The setDataProxy and setToken functions allow setting critical

contract addresses without zero address checks, risking the

misconfiguration of the contract.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: Implement zero address validations for all address parameters in the

affected functions. Ensure that addresses provided to these functions are

always non-zero to maintain the integrity of contract operations.

Remediation (Revised commit: 61b77c4) : Zero address validations was

implemented across mentioned functions in the RevenueDistribution

contract.

22

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/7c8c6a4a-adf1-41b8-b2e0-3c209529ad84


F-2024-0580 - Redundant Zero Address Check in Contract

Initialization - Info

Description: The initialize function in the RevenueDistribution contract is designed

to set up the contract with initial parameters, such as data proxy, token

addresses, and owner information. This function is part of the initialization

process for upgradeable contracts.

The initialize function includes a redundant check for the zero

address on the owner parameter. This check is unnecessary as the

__Ownable_init function from OpenZeppelin's OwnableUpgradeable

already includes a similar check to ensure the owner address is not zero.

Implementation of OwnableUpgradeable.sol:

function __Ownable_init(address initialOwner) internal onlyInitializ

ing {

__Ownable_init_unchained(initialOwner);

}

function __Ownable_init_unchained(address initialOwner) internal onl

yInitializing {

if (initialOwner == address(0)) {

revert OwnableInvalidOwner(address(0));

}

_transferOwnership(initialOwner);

}

While not a security risk, redundant checks can increase the complexity

and gas cost of contract deployment and initialization. Simplifying the

code by removing unnecessary checks can enhance readability and

efficiency.

Assets:
contracts/RevenueDistribution.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: Remove the redundant zero address check for the owner parameter in the

initialize function. The __Ownable_init call sufficiently handles this

check, ensuring the provided owner address is not zero.

Remediation (Revised commit: 61b77c4) : The redundant zero address

check for the ownerAddress parameter in the initialize function of

the RevenueDistribution contract was removed.

23

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/ea0cf6bf-f2d4-4b58-9004-e60d21981be6


F-2024-0582 - Unnecessary Revenue Transfer for Zero Amount - Info

Description: The _claimRevenue function in the RevenueDistribution contract is used

to transfer revenue to a wallet for a specified property. This function is

invoked by public functions like

claimRevenuesForWalletForProperty,

claimRevenuesForWalletForMultipleProperties, and

pushRevenueToUser.

Currently, the _claimRevenue function proceeds with the revenue

transfer process without checking if the revenue amount is greater than

zero. This leads to unnecessary calls and computation when the revenue

amount is zero, increasing the gas cost and reducing efficiency.

function _claimRevenue(address property, address wallet) private {

uint256 revenue = _revenueAmount[property][wallet];

RevenueDistributionHelpers(_tokenAddress).transfer(wallet, revenue);

_revenueAmount[property][wallet] = 0;

_totalRevenue[wallet] = _totalRevenue[wallet] - revenue;

emit RevenueClaimed(property, wallet, revenue, block.timestamp);

}

Performing transfers of zero amounts leads to wasteful gas consumption

and can clutter event logs. While not a security issue, optimizing these

calls can enhance the contract's performance and reduce unnecessary

operations.

Status: Fixed

Recommendations

Recommendation: Implement a check to ensure that revenue transfer is only attempted when

the revenue amount is greater than zero.

Remediation (Revised commit: 61b77c4) : In the RevenueDistribution

contract, the _claimRevenue function was updated to include a

condition that ensures token transfer and state updates occur only if the

revenue amount is above zero.

24

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/316d847d-e940-443d-8e8d-6107fbc9d1fb


F-2024-0591 - SPDX License Identifier - Info

Description: Trust in smart contracts can be better established if their source code is

available. Since making source code available always touches on legal

problems with regards to copyright, the Solidity compiler encourages the

use of machine-readable SPDX license identifiers. Every source file should

start with a comment indicating its license.

The RevenueDistributionProxy contract lacks an SPDX License Identifier.

Assets:
contracts/RevenueDistributionProxy.sol

[https://github.com/blocksquare/blocksquare-contracts]

Status: Fixed

Recommendations

Recommendation: Implement SPDX license identifiers at the beginning of the

RevenueDistributionProxy contract.

Remediation (Revised commit: 61b77c4) : An SPDX License Identifier was

added to the beginning of the RevenueDistributionProxy contract

25

https://portal.hacken.io/App/Projects/Details/6a9baa19-4c5c-426f-a0d6-f7b30a16176e/Finding/18519ae6-3da4-457b-a163-2f1acad18677
https://spdx.org/


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

26



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

27

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/blocksquare/blocksquare-contracts

Commit dbb42e8598c4c03d0879f4c7f03c5f717b613ba0

Whitepaper N/A

Requirements NatSpec

Technical

Requirements

https://docs.blocksquare.io/for-developers/revenue-distribution-

contract; NatSpec

Contracts in Scope

RevenueDistribution.sol

RevenueDistributionProxy.sol

28

https://github.com/blocksquare/blocksquare-contracts
https://docs.blocksquare.io/for-developers/revenue-distribution-contract



