
Smart Contract Code Review

And Security Analysis

Report

Customer: BlockSquare

Date: 20/02/2024

We express our gratitude to the BlockSquare team for the collaborative engagement that enabled the execution

of this Smart Contract Security Assessment.

Blocksquare is a comprehensive real estate tokenization platform designed to cater to a diverse range of

businesses, from those with extensive international real estate portfolios to boutique investment clubs focusing

on local investment models.

Platform: EVM

Language: Solidity

Tags: Factory; Upgradable; Proxy; Yield Farming

Timeline: 26/01/2024 � 20/02/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/blocksquare/oceanpoint-contracts/

Commit d9c5ebf

2

https://hackenio.cc/sc_methodology
https://github.com/blocksquare/oceanpoint-contracts/

Audit Summary

10/10 10/10 85.6% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.5/10
The system users should acknowledge all the risks summed up in the risks section of the report

8 8 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 0

Medium 2

Low 4

Vulnerability Status

F�2024�0629 � Inconsistent Use of Upgradeable Contracts and Incomplete Initialization in MarketplacePool Fixed

F�2024�0631 � Variable Shadowing in MarketplacePool Contract Fixed

F�2024�0635 � Lack of Validation for Start Time and Duration in MarketplacePool's Campaign Fixed

F�2024�0658 � Incorrect Maximum Pledge Calculation in depositInCampaign Function Fixed

F�2024�0659 � Checks-Effects-Interactions Pattern Violation in _deposit Function Fixed

F�2024�0661 � Restrictive CP Wallet Collateral Withdrawal Logic in MarketplacePool Contract Fixed

F�2024�0662 � Owner-Controlled Liquidation of CP Collateral Fixed

F�2024�0664 � Calculation Discrepancy in MarketplacePool Post-Campaign Distribution Fixed

3

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/3e0f6a58-3f22-462c-a799-14e5ad04232d
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/d37ef071-d82b-45ff-a7a5-a31c28a1daab
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/40178e47-fe4b-4a1d-8935-5167f3e4cfc2
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/fd1d2db9-0a6a-43a2-9a19-208aaffe2deb
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/c741e100-d353-49ec-b384-e40759a63795
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/9391d805-b5e1-446f-bf72-477b36d7514e
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/aaa22fee-2e9b-41e8-b9ec-e0885e2d21ad
https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/947ca05c-8a8a-4e28-8e10-559315c99563

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this

report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for BlockSquare

Audited By Ivan Bondar

Approved By Ataberk Yavuzer

Website https://blocksquare.io/

Changelog 30/01/2024 � Preliminary Report

20/02/2024 � Final Report

4

https://blocksquare.io/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 29

Disclaimers 35

Appendix 1. Severity Definitions 36

Appendix 2. Scope 37

System Overview

The Blocksquare Marketplace Pool System represents a sophisticated smart contract framework, aimed at

streamlining investment and reward distribution processes in real estate projects. This system is uniquely

structured to balance the interests of Certified Partners (CPs) and investors, promoting transparent and secure

financial interactions.

Files in the scope:

MarketplacePoolProxyFactory.sol - functions as the core factory for creating individual Marketplace Pool

Proxies. It maintains critical configurations such as logic contract addresses, BST staking contracts, and

governance wallets. Key functionalities include:

Marketplace Pool Creation: Generates new Marketplace Pool Proxies, each linked to a specific

Certified Partner �CP�.

Configuration Management: Allows for updating key components like implementation logic, BST

staking contracts, and governance wallets.

MarketplacePoolProxy.sol � Serves as a Transparent Upgradeable Proxy for each Marketplace Pool. It

leverages the ERC1967Proxy pattern.

MarketplacePool.sol - the primary contract where investment and reward mechanisms are actualized. It is

upgradeable, owned, and reentrancy-guarded, incorporating ERC20 functionalities for internal accounting:

CP and Investor Interaction: Facilitates CPs to initialize pools with collateral and set lock periods, while

allowing investors to contribute during designated campaign periods.

Investment Campaign Management: Manages the campaign's start time, duration, and maximum

pledges, dynamically adjusting investment caps.

Reward Distribution: Implements a mechanism for distributing rewards based on individual stakes and

total pool balance.

Collateral and Lock Management: Provides functions for CP collateral withdrawal, liquidation, and lock

period extensions, governed by ownership privileges.

Privileged roles

MarketplacePoolProxyFactory.sol:

Owner :

Manages the creation of new pools, updates implementation logic, and configures key contracts

like BST staking and governance wallet.

MarketplacePool.sol:

Owner:

Holds the power to allow CP collateral withdrawal, extend lock periods, and liquidate CP collateral

under defined conditions.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed

scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements have some gaps:

Project overview is detailed.

Roles and permissions are described.

Use cases are described.

For each contract all futures are described.

Technical description is robust:

Run instructions are provided.

Technical specification is provided.

NatSpec is sufficient.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 85.6% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is partially missed.

Interactions by several users are not tested thoroughly.

Security score

Upon auditing, the code was found to contain 1 critical, 0 high, 2 medium, and 4 low severity issues. All issues

were fixed in the remediation part of this audit, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.5. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Centralized Upgrades:

The factory contract acts as a central point for upgrading the implementation logic of all proxy

contracts. By updating the implementation address in the factory contract, all associated proxies will

use the new logic.

Solidity Version Compatibility and Cross-Chain Deployment:

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the PUSH0

(0x5f) opcode. This opcode is currently supported on the Ethereum mainnet but may not be

universally supported across other blockchain networks. Consequently, deploying the contract on

chains other than the Ethereum mainnet, such as certain Layer 2 �L2� chains or alternative networks,

might lead to compatibility issues or execution errors due to the lack of support for the PUSH0 opcode.

In scenarios where deployment on various chains is anticipated, selecting an appropriate Ethereum

Virtual Machine �EVM� version that is widely supported across these networks is crucial to avoid

potential operational disruptions or deployment failures.

Uncertainty in Reward Allocation in MarketplacePool:

Conditional Reward Distribution� Rewards can only be added to pools that are marked as successful.

This introduces an element of uncertainty, as rewards depend on the successful status of the pool.

Dependence on External Action� Rewards are allocated manually through the addReward function

and only after the pool ends. This means there's no guaranteed reward during the pool's active period.

Variable Reward Amounts� The total reward depends on the amount specified in addReward call. This

can lead to variability in reward amounts, with no predefined or fixed reward structure.

8

Findings

Vulnerability Details

F-2024-0664 - Calculation Discrepancy in MarketplacePool Post-Campaign

Distribution - Critical

Description: The MarketplacePool contract faces a notable issue with the calculation of user

deposits and rewards, primarily after reward distribution. The root of this problem

lies in the dual use of the _tempsBSTBalanceThis variable, which is employed

for tracking both user deposits and calculating rewards. This overlapping usage

leads to discrepancies, particularly evident when new deposits are made after

rewards was added.

_deposit function: In the _deposit function, the calculation for

amountToMint is based on the ratio of the deposited amount to the total

supply, which in turn is influenced by _tempsBSTBalanceThis. When new

deposits are added post-campaign, they affect the total supply but are

rounded down during the minting process. This round-down affects the

balance between totalSupply and _tempsBSTBalanceThis, leading to

inconsistencies.

function _deposit(uint256 amount) private {

uint256 amountToMint = 0;

if (_msgSender() == _cpWallet) {

//..

} else {

amountToMint = (totalSupply() == 0 || _tempsBSTBalanceThis == 0)

? amount

: (amount * totalSupply()) / _tempsBSTBalanceThis;

_mint(_msgSender(), amountToMint);

_tempsBSTBalanceThis += amount;

}

//..

}

_withdrawUser function: The _withdrawUser function demonstrates

where these discrepancies become problematic. It calculates the amount a

user is entitled to withdraw (amountToSend) and their rewards, based on

their share of the total supply and _tempsBSTBalanceThis. For users who

deposit after the campaign, the mismatch in amountToMint and

_tempsBSTBalanceThis can result in their withdrawal amount being less

than their deposit, due to the rounding down in minting. This situation can

lock their funds in the contract.

function _withdrawUser() private returns (uint256) {

//..

uint256 userDeposited = _deposited[_msgSender()];

uint256 share = balanceOf(_msgSender());

uint256 amountToSend = (share * _tempsBSTBalanceThis) / totalSupply();

uint256 reward = amountToSend - userDeposited;

//..

}

The overlapping use of _tempsBSTBalanceThis for both deposit tracking and

reward calculation creates a significant issue. It can lead to skewed reward

distributions and, more critically, the potential locking of users' deposited tokens

9

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/947ca05c-8a8a-4e28-8e10-559315c99563

and rewards within the contract. The problem is accentuated in scenarios

involving post-campaign deposits, where the new deposits alter the reward

calculations for existing users and can prevent new depositors from withdrawing

their funds.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Critical

Impact: Likelihood �1�5�� 5

Impact �1�5�� 5

Exploitability �1,2�� 1

Complexity �0�2�� 1

Final Score: 4.8 �Critical]

Recommendations

Recommendation:
Distinct Variables for Deposits and Rewards:

Implement separate variables for tracking user deposits and rewards.

This separation ensures that the calculation of rewards is solely based

on the actual reward pool, unaffected by any new deposits.

Refactoring Post-Campaign Deposit Logic:

Redesign the logic for deposits made after the campaign and after

rewards have been distributed. These deposits should not impact the

existing reward pool but rather contribute towards any new rewards

added subsequently. This change ensures that users who deposit during

the campaign have their reward allocation unaffected by later deposits.

Adjustment in Withdrawal Calculations:

Modify the _withdrawUser function to calculate the withdrawal amount

and rewards based on distinct variables for deposits and rewards. This

adjustment ensures that the total claimed rewards do not exceed the

actual reward pool.

Documentation and Code Comments Update:

Update the NatSpec comments and any associated documentation to

clearly explain the roles and purposes of the newly introduced variables

and updated logic.

Remediation �Revised commit: 246e2c8� � The MarketplacePool contract now

utilizes two new variables, _rewardIndex and _rewardIndexOf, to separately

track rewards and their distribution. The _rewardIndex is updated whenever a

reward is added to the contract. The _rewardIndexOf records the value of

_rewardIndex at the time of a user's deposit. A user's reward is calculated

10

based on the difference between the current _rewardIndex and the stored

value in _rewardIndexOf for their wallet, multiplied by the user's balance. This

approach resolves the calculation discrepancies and prevents the potential

locking of users' funds in the contract.

Evidences

Calculation Inconsistency in MarketplacePool Due to Shared Balance Tracking

Reproduce:
PoC steps:

Initialize and Configure Pool: CP initializes the pool with a deposit and lock

period. Configure the campaign with start time, duration, and initial max

pledge.

Campaign Deposits: Advance time to the second half of the campaign. Users

(user1 and user2� deposit equal amounts.

Verify Campaign Success: Confirm the campaign was successful and note

the lock end time.

Add Post-Campaign Rewards: After the lock period, add a specified reward

amount.

Record Initial Rewards: Log initial unclaimed rewards for user1 and user2.

CP Withdrawal Process: Allow and execute CP's withdrawal of their collateral.

New User Deposit and Reward Check: User3 deposits post-campaign. Check

and note user3's unclaimed rewards, expected to be zero.

Withdrawal Attempts and Observations:

User3's withdrawal attempt fails due to calculation issues.

User1 withdraws successfully.

User2's withdrawal fails due to insufficient rewards, demonstrating the

calculation inconsistency.

Test Case:

it("Calculation Inconsistency in MarketplacePool Due to Shared Balance Trac

king", async () => {

const poolStart = (await ethers.provider.getBlock("latest")).timestamp;

// CP initializes the pool with a deposit and sets the lock period

await pool.connect(cp1).CPInit(ethers.utils.parseEther("90000"), 5 * MONTH)

;

// Configuring the pool campaign with a start time, duration, and initial m

ax pledge

await pool.connect(bs).configurePoolCampaign(poolStart, 31 * DAY, ethers.ut

ils.parseEther("12000"));

// Fast forward time to the second half of the campaign

await advanceTime(31 * DAY / 2);

// Users deposit during the second half of the campaign

await pool.connect(user1).depositInCampaign(ethers.utils.parseEther("5000")

);

await pool.connect(user2).depositInCampaign(ethers.utils.parseEther("500

See more

Results:
MarketplacePoolStaking

User Lock End: 1720941328

Initial Unclaimed Rewards User1: 50000000000000000000000

Initial Unclaimed Rewards User2: 50000000000000000000000

Unclaimed Rewards User3: 0

11

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/947ca05c-8a8a-4e28-8e10-559315c99563

Updated Unclaimed Rewards User1: 50000000000000000000002

Updated Unclaimed Rewards User2: 50000000000000000000002

✔ Calculation Inconsistency in MarketplacePool Due to Shared Balance Tracki

ng

Files: MartekplacePoolStaking.Calculation.test.ts

12

F-2024-0629 - Inconsistent Use of Upgradeable Contracts and Incomplete

Initialization in MarketplacePool - Medium

Description: The MarketplacePool contract in the Blocksquare Marketplace Pool System

demonstrates a inconsistency in its use of OpenZeppelin contracts, specifically in

the mixture of upgradeable (@openzeppelin/contracts-upgradeable) and

non-upgradeable (@openzeppelin/contracts� OpenZeppelin libraries.

Specifically, the contract uses OwnableUpgradeable and ERC20Upgradeable

from the @openzeppelin/contracts-upgradeable library but also imports

SafeERC20 and IERC20 from the non-upgradeable @openzeppelin/contracts

library. Additionally, the initialize function initializes ERC20Upgradeable but

does not initialize OwnableUpgradeable. It also uses the standard

ReentrancyGuard instead of its upgradeable version:

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

// ... other imports ...

function initialize(

// ... parameters ...

) external initializer {

__ERC20_init(tokenName, tokenSymbol);

// ... other initializations ...

}

The mix of upgradeable and non-upgradeable contract imports can lead to

unexpected behavior, particularly in the context of proxy-based upgradeability

patterns. Non-upgradeable contracts are not designed to function with the state

storage layout of upgradeable contracts, potentially causing issues with state

variable alignment and data corruption during contract upgrades.

The primary impact is the potential for malfunctioning contract behavior and data

corruption upon upgrading the contract. This could lead to loss of funds or

assets, unauthorized actions, or complete contract failure.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood �1�5�� 3

Impact �1�5�� 5

Exploitability �1,2�� 2

Complexity �0�2�� 0

Final Score: 2.5 �Medium]

13

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/3e0f6a58-3f22-462c-a799-14e5ad04232d

Recommendations

Recommendation: To mitigate these issues, the following steps are recommended:

Consistent Use of Upgradeable Contracts: Replace all non-upgradeable

OpenZeppelin imports with their upgradeable counterparts from the

@openzeppelin/contracts-upgradeable library.

Proper Initialization: Modify the initialize function to include the

initialization of both OwnableUpgradeable and

ReentrancyGuardUpgradeable.

Updated import and initialization example:

import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgr

adeable.sol";

import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.s

ol";

import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgrade

able.sol";

// ... other upgradeable imports ...

function initialize(

// ... parameters ...

) external initializer {

__ERC20_init(tokenName, tokenSymbol);

__Ownable_init();

__ReentrancyGuard_init();

// ... other initializations ...

}

By ensuring consistent use of upgradeable contracts and proper initialization, the

MarketplacePool contract can maintain its intended functionality and security

posture, especially in the context of future upgrades.

Remediation �Revised commit: d9c5ebf) � The MarketplacePool contract now

uniformly employs upgradeable versions of OpenZeppelin libraries, including

SafeERC20Upgradeable, IERC20Upgradeable, and

ReentrancyGuardUpgradeable. The contract's initialize function was updated

to include the initialization of both Ownable2Step and

ReentrancyGuardUpgradeable, ensuring consistent functionality and security in

the context of future upgrades. The constructor was adjusted to disable

initializers, aligning with best practices for upgradeable contracts.

14

F-2024-0658 - Incorrect Maximum Pledge Calculation in

depositInCampaign Function - Medium

Description: The depositInCampaign function in the MarketplacePool contract is designed

to manage user deposits during a campaign. It includes a dynamic calculation of

the maximum amount (currentMaxPledge) a user can deposit, which is

supposed to increase over time, specifically during the first half of the campaign.

Identified Concerns:

Underflow Risk: The function faces an underflow issue in the

currentMaxPledge calculation. If _MAX_AMOUNT_DEPOSITED is set lower

than the sum of _cpDeposit and _maxPledge, the calculation can result in

an underflow. This issue could potentially block all user deposits during the

first half of the campaign.

No Deposit Limit in Second Half: Once past the midpoint of the campaign,

there's no individual limit on user deposits. The only restriction is the overall

campaign cap (_MAX_AMOUNT_DEPOSITED). This could lead to a quick

fulfillment of the campaign cap.

NatSpec Misalignment: In the configurePoolCampaign function the

NatSpec comments imply a continuous increase in maxPledge throughout

the campaign. However, the increase is only applicable during the first half.

For the remainder of the campaign, the maximum pledge a user can make

decreases with each deposit and is governed by the campaign's remaining

cap.

Affected Code:

Function configurePoolCampaign� No validation for _maxPledge to

prevent underflow in depositInCampaign.

/// @param maxPledge Starting maximum amount of sBST each user can invest (

increases over time)

function configurePoolCampaign(

uint256 start,

uint256 duration,

uint256 maxPledge

) external {

...

_start = start;

_duration = duration;

_maxPledge = maxPledge;

...

}

Function depositInCampaign� Potential underflow in currentMaxPledge

calculation and no limit on user deposits post mid-campaign

function depositInCampaign(uint256 amount) external {

...

if (_start + (_duration / 2) > block.timestamp) {

uint256 currentMaxPledge = _maxPledge +

(((_MAX_AMOUNT_DEPOSITED - _cpDeposit - _maxPledge) /

(_duration / 2)) * (block.timestamp - _start));

require(

_deposited[_msgSender()] + amount <= currentMaxPledge,

"MarketplacePool: Amount exceeds current max pledge!"

);

}

...

}

15

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/fd1d2db9-0a6a-43a2-9a19-208aaffe2deb

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood �1�5�� 4

Impact �1�5�� 4

Exploitability �1,2�� 2

Complexity �0�2�� 0

Final Score: 2.5 �Medium]

Recommendations

Recommendation:
Logic Adjustment in depositInCampaign� Revise the currentMaxPledge

calculation within the depositInCampaign function to avoid underflow and

ensure it aligns with the intended campaign behavior throughout the entire

campaign duration.

Check in configurePoolCampaign� Implement a check within the

configurePoolCampaign function to prevent setting a _maxPledge that

could lead to an underflow in the currentMaxPledge calculation during the

first half of the campaign.

Clarify Documentation: Update NatSpec comments to accurately describe

the behavior of maxPledge during different phases of the campaign,

ensuring users have a clear understanding of its functionality.

Remediation �Revised commit: 246e2c8� � The configurePoolCampaign

function in the MarketplacePool contract now includes a limit on the maxPledge

parameter, ensuring it does not exceed the difference between

_MAX_AMOUNT_DEPOSITED and _cpDeposit. This adjustment prevents potential

underflow issues in the depositInCampaign function. Additionally, the NatSpec

documentation was updated for clearer understanding.

Evidences

Underflow in depositInCampaign

Reproduce:
PoC Steps:

Initialization: Set up the MarketplacePool contract and initialize it with

specific values for _cpDeposit and _duration.

16

Configuration: Call configurePoolCampaign with a _maxPledge value that,

when combined with _cpDeposit, exceeds _MAX_AMOUNT_DEPOSITED.

Deposit Attempt: Try to make a deposit as a regular user during the first half

of the campaign.

Expectation: The transaction reverts due to an underflow in the calculation of

currentMaxPledge.

it("Underflow in depositInCampaign", async () => {

const now = (await ethers.provider.getBlock("latest")).timestamp;

// cpWallet inits pool

await pool.connect(cp1).CPInit(ethers.utils.parseEther("90000"), 5 * MONTH)

;

// bsWallet configures pool start, duration and initial maxPledg

await pool.connect(bs).configurePoolCampaign(now, 31 * DAY, ethers.utils.pa

rseEther("12000"));

// Attempting to deposit in the campaign

// Expected to revert due to underflow in currentMaxPledge calculation

await pool.connect(user1).depositInCampaign(ethers.utils.parseEther("5000")

);

});

Results:
1) MarketplacePoolStaking

Underflow in depositInCampaign:

Error: VM Exception while processing transaction: reverted with panic code

0x11 (Arithmetic operation underflowed or overflowed outside of an unchecke

d block)

Files: MartekplacePoolStaking.Underflow.test.ts

17

F-2024-0631 - Variable Shadowing in MarketplacePool Contract - Low

Description: The MarketplacePool contract in the Blocksquare Marketplace Pool System

exhibits a variable shadowing issue due to the use of a variable name that is

already defined in an inherited contract. Specifically, the contract declares a

private boolean variable _initialized, which shadows the _initialized

variable in the Initializable contract from the OpenZeppelin library. Additionally,

the initialize function's parameter owner shadows the owner() function

from OwnableUpgradeable.

The Initializable contract, a part of the upgradeable OpenZeppelin contracts, uses

_initialized to track its initialization status. The redeclaration of

_initialized in MarketplacePool can lead to confusion and potential bugs, as it

may be unclear which variable is being referenced at different points in the

contract:

bool private _initialized = false;

Similarly, the initialize function's parameter owner may cause confusion with

the owner() function provided by OwnableUpgradeable, which is used to

determine the current owner of the contract:

function initialize(

// ... other parameters ...

address owner,

// ... other parameters ...

) external initializer {

// ... initialization logic ...

}

Shadowing variables and function names can lead to misunderstandings about

which variable or function is being accessed, potentially causing logical errors in

the contract's execution. While this may not directly lead to loss of funds, it can

result in unpredictable behavior and difficulties in contract maintenance and

upgrades.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 5

Impact �1�5�� 2

Exploitability �1,2�� 2

Complexity �0�2�� 0

Final Score: 2.3 [Low]

18

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/d37ef071-d82b-45ff-a7a5-a31c28a1daab

Recommendations

Recommendation: To resolve these shadowing issues, the following changes are recommended:

Rename the _initialized variable in MarketplacePool to a more specific

name, such as _cpInitialized, to clearly differentiate it from the

_initialized variable in Initializable.

Change the owner parameter in the initialize function to a different

name, such as poolOwner, to avoid shadowing the owner() function from

OwnableUpgradeable.

bool private _cpInitialized = false;

function initialize(

// ... other parameters ...

address poolOwner,

// ... other parameters ...

) external initializer {

__ERC20_init(tokenName, tokenSymbol);

// ... other initialization logic ...

_transferOwnership(poolOwner);

}

By renaming these variables and parameters, the MarketplacePool contract can

avoid confusion and potential logical errors associated with variable and function

shadowing, leading to clearer and more maintainable code.

Remediation �Revised commit: 246e2c8� � Renamed _initialized to

_poolInitialized to avoid conflict with the Initializable contract, and changed

the parameter name owner in the initialize function to ownerWallet,

distinguishing it from the owner() function in OwnableUpgradeable.

19

F-2024-0635 - Lack of Validation for Start Time and Duration in

MarketplacePool's Campaign - Low

Description: The MarketplacePool contract in the Blocksquare Marketplace Pool System lacks

necessary validations for the start time and duration parameters in the

configurePoolCampaign function. This function is crucial for setting up

investment campaigns, determining when users can deposit

(depositInCampaign) and the conditions under which withdrawals (withdraw,

_withdrawCP, _withdrawUser) can occur.

Currently, the configurePoolCampaign function does not validate whether the

start time is set in the future (i.e., start >= block.timestamp) or if the

duration meets a minimum threshold.

function configurePoolCampaign(uint256 start, uint256 duration, uint256 max

Pledge) external {

// ... existing checks ...

_start = start;

_duration = duration;

// ...

}

The absence of these checks can lead to disruptions in the investment

campaign's operation, potentially allowing deposits or withdrawals outside the

intended time frames.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 2

Exploitability �1,2�� 2

Complexity �0�2�� 0

Final Score: 1.8 [Low]

Recommendations

Recommendation: It is recommended to add checks in the configurePoolCampaign function to

ensure that:

The start time is set in the future (start >= block.timestamp).

The duration meets a minimum threshold, ensuring the campaign runs for a

reasonable period.

20

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/40178e47-fe4b-4a1d-8935-5167f3e4cfc2

By implementing these checks, the MarketplacePool contract can ensure that

investment campaigns are configured with valid and reasonable time frames.

Remediation �Revised commit: 246e2c8� � Enhanced the

configurePoolCampaign function in the MarketplacePool contract with

additional time validations. Now, the campaign start time is verified to be set in

the future, and the duration is constrained between 5 to 30 days. These updates

ensure campaign configurations align with intended operational timeframes.

21

F-2024-0661 - Restrictive CP Wallet Collateral Withdrawal Logic in

MarketplacePool Contract - Low

Description: The withdrawal process for Certified Partners (CPs) in the MarketplacePool

contract is dependent on specific conditions controlled by the contract owner.

This setup introduces limitations on CPs' ability to withdraw their collateral

independently.

The _withdrawCP function allows CPs to withdraw their collateral only under two

scenarios: either the campaign was unsuccessful, or the contract owner has

enabled the _isAllowedToWithdraw flag through the

allowExtractionOfCollateral function.

// Withdrawal function for CP

function _withdrawCP() private returns (uint256) {

require(

_isAllowedToWithdraw ||

(!_isCappedReached &&

_start + _duration + 10 days <= block.timestamp)

);

// Withdrawal logic

}

However, the allowExtractionOfCollateral function can only be called by

the owner after a period that is effectively double the initial lock period

(_lockEnd + _lockPeriod), essentially prolonging the CP's ability to access

their funds.

// Owner function to allow CP collateral extraction

function allowExtractionOfCollateral() external onlyOwner {

require(

_lockEnd > 0 && _lockEnd + _lockPeriod <= block.timestamp,

"MarketplacePool: CP lock period must end!"

);

_isAllowedToWithdraw = true;

}

Additionally, the extendCPLockPeriod function allows the owner to further

extend the lock period. However, this function only adds constraints on the

owner's ability to activate allowExtractionOfCollateral and doesn't directly

affect CPs' withdrawal capabilities.

// Owner function to extend CP's lock duration

function extendCPLockPeriod(uint256 extendBy) external onlyOwner {

require(

_lockEnd > 0 &&

!_isAllowedToWithdraw &&

_lockEnd + _lockPeriod <= block.timestamp,

"MarketplacePool: CP lock period must end!"

);

_lockPeriod += extendBy;

}

In essence, the extendCPLockPeriod serves to further delay the point at which

the owner can permit CPs to withdraw their collateral, effectively rendering the

function counterproductive to its intended purpose. This design grants the owner

significant control over CP funds post-successful campaigns, limiting CPs'

financial autonomy and potentially affecting their operational fluidity.

22

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/9391d805-b5e1-446f-bf72-477b36d7514e

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 1

Impact �1�5�� 5

Exploitability �1,2�� 2

Complexity �0�2�� 0

Final Score: 1.8 [Low]

Recommendations

Recommendation:
Autonomous Withdrawal Mechanism for CPs:

Revise the _withdrawCP function to incorporate a more flexible

withdrawal mechanism for CPs. Instead of solely relying on the

_isAllowedToWithdraw flag set by the owner, consider conditions that

allow CPs to initiate withdrawals autonomously.

Revise or Remove extendCPLockPeriod:

Reassess the extendCPLockPeriod function to ensure it aligns with the

overall objectives of the contract. If retained, restrict its usage to within

the maximum lock period permissible under CPInit �365 days). This

ensures consistency across the contract’s functions and prevents

excessively prolonged lock periods.

If the function's utility is limited or if it complicates the contract

unnecessarily, consider removing it. Simplifying the contract can

enhance clarity and reduce potential misinterpretations or misuse.

Clear Documentation and NatSpec Comments:

Update NatSpec comments and all related documentation to reflect any

changes made to the CP withdrawal process. Ensure that the updated

process is clearly documented, specifying under what conditions CPs

can withdraw their collateral.

Remediation �Revised commit: 246e2c8� �Mitigated with Customer notice) � The

CPs collateral is intended as a protection mechanism for the community that

pledges their sBST to a specific marketplace pool. Before launching a

marketplace pool campaign, the CP will state clear KPIs that they intend to reach

in the specified timeframe to convince the community to pledge their sBST to

their project.

As pointed out by the auditor, the contract adds limitations on CPs' ability to

withdraw their collateral independently. As KPIs set forth by the CP before a

marketplace pool campaign is initiated might not be on-chain conditions that

would allow us to implement a mechanism for the CP to initiate withdrawals

23

autonomously, the implemented method is therefore the intended method of

unlocking CP collateral. The risks are mitigated by assigning ownership of a

marketplace pool contract to the DAO’s Governance board multisig (or later on in

our decentralization roadmap on-chain voting with sBST�. At the end of a

marketplace pool cycle, the Governance board will assess the success of the CP

and set the _isAllowedToWithdraw flag safeguarding the best interests of the

community.

24

F-2024-0662 - Owner-Controlled Liquidation of CP Collateral - Low

Description: In the MarketplacePool contract, the liquidateCPCollateral function grants

the contract owner the authority to liquidate the entire Certified Partner �CP�

collateral. This function can be invoked only under specific conditions, mainly

following a successful campaign, as indicated by _lockEnd > 0.

Affected Code:

/// @notice Triggered by owner to withdraw all of CP's collateral

function liquidateCPCollateral() external onlyOwner {

require(

_lockEnd > 0 &&

!_isAllowedToWithdraw &&

_lockEnd + _lockPeriod <= block.timestamp,

"MarketplacePool: CP lock period must end!"

);

uint256 amount = _cpDeposit;

_cpDeposit = 0;

_deposited[_cpWallet] = 0;

_totalDeposited -= amount;

IERC20(_sbstContract).safeTransfer(owner(), amount);

emit LiquidateCPCollateral(amount);

}

The function's design is such that liquidation can occur after the lapse of a

double lock period (_lockEnd + _lockPeriod). This period is significant as it

goes beyond the standard lock period defined for user withdrawals. Given that

only the owner can trigger the allowExtractionOfCollateral function, there

is a notable period where the owner has unilateral control over the CP's deposited

funds.

This design places a considerable amount of control in the hands of the owner,

especially concerning the CP's collateral. In scenarios where the double lock

period has elapsed, the owner can choose to liquidate the CP's collateral,

transferring all funds to their address.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 2

Impact �1�5�� 5

Exploitability �1,2�� 2

Complexity �0�2�� 0

Final Score: 2.3 [Low]

Recommendations

25

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/aaa22fee-2e9b-41e8-b9ec-e0885e2d21ad

Recommendation:
Re-evaluate the liquidateCPCollateral function's necessity and its

alignment with the contract's intended use and trust model. If it is deemed

essential for operational or risk management reasons, consider implementing

additional safeguards or conditions to balance the power dynamics between

the contract owner and CPs.

Alternatively, consider removing or significantly restricting this function. This

could involve setting stringent conditions under which liquidation is

permissible.

Ensure clear and transparent communication regarding the function's

existence, purpose, and the conditions under which it can be executed. This

transparency is vital for maintaining trust among all stakeholders, particularly

CPs who contribute collateral to the pool.

Remediation �Revised commit: 246e2c8� �Mitigated with Customer notice) � The

liquidation of CPs collateral is intended for cases where the CP has failed to

deliver on the promises made to the community prior to launching their

marketplace pool campaign.

As pointed out by the auditor, the liquidateCPCollateral function grants the

contract owner the authority to liquidate the entire Certified Partner �CP�

collateral. This function can be invoked only under specific conditions, mainly

following a campaign that reached its time limit, as indicated by _lockEnd � 0.

This design places a considerable amount of control in the hands of the owner,

which will be assigned to the DAO’s Governance board multisig (or later on in our

decentralization roadmap on-chain voting with sBST� and in scenarios where the

double lock period has elapsed, the DAO’s Governance board can choose to

liquidate the CP's collateral, transferring all funds to their address and for the

DAO’s Governance board to later vote and decide how to manage the confiscated

collateral. By default, the voted decision is to burn this supply to decrease the

circulating supply of BST and positively impacting the community.

26

F-2024-0659 - Checks-E�ects-Interactions Pa�ern Violation in _deposit

Function - Info

Description: The _deposit function in the MarketplacePool contract is responsible for

handling sBST token deposits during and after the campaign. This function

performs token minting and updates state variables before calling an external

transfer function.

Affected Code:

function _deposit(uint256 amount) private {

uint256 amountToMint = 0;

if (_msgSender() == _cpWallet) {

_cpDeposit += amount;

} else {

amountToMint = (totalSupply() == 0 || _tempsBSTBalanceThis == 0)

? amount

: (amount * totalSupply()) / _tempsBSTBalanceThis;

_mint(_msgSender(), amountToMint);

_tempsBSTBalanceThis += amount;

}

IERC20(_sbstContract).safeTransferFrom(

_msgSender(),

address(this),

amount

);

_deposited[_msgSender()] += amount;

_totalDeposited += amount;

emit Deposit(_msgSender(), amount, amountToMint);

}

The function interacts with an external ERC20 contract (_sbstContract) to

transfer tokens from the user to the contract after updating state variables like

_cpDeposit, _tempsBSTBalanceThis, and minting tokens.

Although the primary token intended for use in this contract is

sBlocksquareToken, which is generally safe from reentrant calls, the use of other

ERC20 tokens could introduce reentrancy risks.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Classification

Severity: Info

Recommendations

Recommendation: Perform the safeTransferFrom call in the beginning of the _deposit function

before updating any state variables or minting tokens according to the Checks-

Effects-Interactions pattern.

Remediation �Revised commit: 246e2c8� � The _deposit function in the

MarketplacePool contract was updated. The safeTransferFrom call to the

27

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/c741e100-d353-49ec-b384-e40759a63795

ERC20 _sbstContract is now executed first, prior to updating state variables or

token minting.

28

Observation Details

F-2024-0632 - Missing Events in Key Functions - Info

Description: The MarketplacePoolProxyFactory contract lacks event emissions in few key

owner-only functions: changeImplementation, changeBSTStakingContract,

changeGovernanceWallet These functions are used to update the addresses

of crucial contract dependencies – the implementation of the MarketplacePool,

BST staking contract and governance wallet, respectively.

The absence of events in these functions means that there is no on-chain

traceability or transparency when these addresses are updated.

Assets:
contracts/MarketplacePoolProxyFactory.sol

[https://github.com/blocksquare/oceanpoint-contracts/]

Status: Fixed

Recommendations

Recommendation: To enhance transparency and traceability, it is recommended to emit events

whenever the implementation of the MarketplacePool, BST staking contract and

governance wallet addresses are updated. This will allow users and external

services to monitor and react to changes.

Remediation �Revised commit: 246e2c8� � Events have been integrated into the

changeImplementation, changeBSTStakingContract, and

changeGovernanceWallet functions of the MarketplacePoolProxyFactory

contract. This update ensures on-chain traceability and enhances transparency

for address updates.

29

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/0b64991b-7572-49e3-84b5-b692d538155f

F-2024-0633 - Missing checks for `address(0)` - Info

Description: The MarketplacePoolProxyFactory contract lacks essential validations to check

for the zero address (address(0)) in several functions. The zero address check

is a fundamental security measure in smart contracts to prevent operations

involving uninitialized or default addresses.

Affected Functions:

constructor� Does not validate the implementation,

bstStakingContract, rewardToken, and governancePool addresses.

This lack of validation could result in these critical addresses being set to the

zero address.

createMarketplacePool� This function lacks zero address checks for

cpWallet and bsWallet parameters, potentially allowing the creation of

marketplace pools with invalid addresses.

changeImplementation� The function allows updating the implementation

logic address without checking for the zero address, risking the

misconfiguration of the contract.

changeBSTStakingContract� Similar to changeImplementation, this

function permits changing the BST staking contract address without

validating against the zero address.

changeGovernanceWallet� This function enables the modification of the

governance wallet address without ensuring it is not the zero address.

Assets:
contracts/MarketplacePoolProxyFactory.sol

[https://github.com/blocksquare/oceanpoint-contracts/]

Status: Fixed

Recommendations

Recommendation: Implement zero address validations for all address parameters in the affected

functions. Ensure that addresses provided to these functions are always non-zero

to maintain the integrity of contract operations.

Remediation �Revised commit: 246e2c8� � Zero address validations were

implemented for critical parameters in the MarketplacePoolProxyFactory contract.

This includes checks in the constructor, createMarketplacePool,

changeImplementation, changeBSTStakingContract, and

changeGovernanceWallet functions, ensuring the integrity of contract

operations and preventing misconfigurations with uninitialized addresses.

30

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/e8711bff-cf2c-46b4-a6e5-111bace4ff8b

F-2024-0634 - Potential Loss of Ownership Control in Contract Using

Ownable - Info

Description: The MarketplacePoolProxyFactory and MarketplacePool contracts employs

Ownable from OpenZeppelin for ownership management.

If ownership is mistakenly transferred, it may result in the irrevocable loss of

control over the contract. Any function guarded by the onlyOwner modifier

would become inaccessible to the original owner, effectively freezing critical

administrative functionalities.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

contracts/MarketplacePoolProxyFactory.sol

[https://github.com/blocksquare/oceanpoint-contracts/]

Status: Fixed

Recommendations

Recommendation: Integrate Ownable2StepUpgradeable for the MarketplacePool and Ownable2Step

for the MarketplacePoolProxyFactory, which implements a two-step ownership

transfer process. This requires the new owner to actively accept ownership,

adding an additional layer of security against accidental transfers.

Remediation �Revised commit: 246e2c8� � The MarketplacePool and

MarketplacePoolProxyFactory contracts were updated to use

Ownable2StepUpgradeable instead of OwnableUpgradeable. This change

introduces a two-step ownership transfer process, enhancing security against

unintentional ownership changes.

31

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/732fc20e-343e-443f-b1cc-bf5756eca15c

F-2024-0660 - Missing Error Messages in require Statements - Info

Description: In the MarketplacePool contract, the _withdrawCP and _withdrawUser

functions are critical for handling the withdrawal process for the Certified Partner

�CP� and regular users, respectively. These functions contain require statements

crucial for enforcing business logic and validating conditions.

The require statements in both functions lack descriptive error messages. This

absence can make it challenging for users and developers to understand the

reason for transaction failures or reverts.

Affected Functions:

_withdrawCP�

function _withdrawCP() private returns (uint256) {

require(

_isAllowedToWithdraw ||

(!_isCappedReached && _start + _duration + 10 days <= block.timestamp)

);

// Rest of the function...

}

_withdrawUser:

function _withdrawUser() private returns (uint256) {

require(

(_isCappedReached && _lockEnd <= block.timestamp) ||

(!_isCappedReached && _start + _duration + 10 days <= block.timestamp)

);

require(

balanceOf(_msgSender()) > 0,

"MarketplacePool: You need to stake sBST first."

);

// Rest of the function...

}

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Recommendations

Recommendation: Include clear and informative error messages in the require statements. This will

enhance the contract's transparency and help users understand the conditions

under which their transactions may fail.

As a best practice, informative error messages should not be longer than 32

bytes in order to prevent extra gas consumption.

Remediation �Revised commit: 246e2c8� � The _withdrawCP and

_withdrawUser functions in the MarketplacePool contract were updated with

descriptive error messages. This enhancement provides clarity on transaction

failures or revert.

32

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/a6f33b7d-c691-4e46-bdbf-7659a5a8c568

F-2024-0663 - Absence of Deposit Veri�cation in Withdraw Function - Info

Description: In the MarketplacePool contract, the withdraw function allows users, including

the Certified Partner �CP�, to withdraw their staked sBST and any applicable

rewards. However, the function lacks a preliminary check to ensure that the caller

(user or CP� has an existing deposit.

function withdraw() public nonReentrant {

require(

_isConfigured,

"MarketplacePool: Pool needs to be configured first!"

);

uint256 toReturn = 0;

if (_msgSender() == _cpWallet) {

toReturn = _withdrawCP();

} else {

toReturn = _withdrawUser();

}

IERC20(_sbstContract).safeTransfer(_msgSender(), toReturn);

}

The absence of a deposit verification check in the withdraw function can lead to

wasteful transactions where users or the CP, without a current deposit, attempt

to execute the function.

Assets:
contracts/MarketplacePool.sol [https://github.com/blocksquare/oceanpoint-

contracts/]

Status: Fixed

Recommendations

Recommendation: Implement an initial check in the withdraw function to verify that the caller has a

positive deposit (_deposited[_msgSender()] > 0). This check should be

placed immediately after the existing configuration check (_isConfigured).

Such a verification step will ensure that only users with existing deposits can

proceed with the withdrawal process, thereby preventing futile transaction

attempts and saving gas costs.

Remediation �Revised commit: 246e2c8� � In the MarketplacePool contract, the

withdraw function was updated to include a check ensuring that the caller has a

positive deposit before proceeding with the withdrawal.

33

https://portal.hacken.io/App/Projects/Details/fb7cc69f-1994-487a-a1ba-16f3ddf0fc17/Finding/3fcfa173-09bc-4681-8fcf-d492b2707828

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of

which are disclosed in this report �Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the

code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do

not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-

free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that

you should not rely on this report only — we recommend proceeding with several independent audits and a

public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language,

and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the

Consultant cannot guarantee the explicit security of the audited smart contracts.

34

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to

asset loss. Contradictions and requirements violations. Major deviations from best practices are

also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality

score.

35

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/blocksquare/oceanpoint-contracts/

Commit bdb3d6372e35685c7bdb96d0693f9f5cc55b1a90

Whitepaper N/A

Requirements NatSpec

Technical Requirements https://docs.oceanpoint.fi/for-developers/marketplace-pools; NatSpec

Contracts in Scope

./contracts/MarketplacePoolProxyFactory.sol

./contracts/MarketplacePoolProxy.sol

./contracts/MarketplacePool.sol

36

https://github.com/blocksquare/oceanpoint-contracts/
https://docs.oceanpoint.fi/for-developers/marketplace-pools;

