
Smart Contract Code

Review And Security

Analysis Report

Customer: Kryptomon

Date: 26/02/2024



We express our gratitude to the Kryptomon team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Kryptomon is a groundbreaking game, that adopts Chainlink CCIP to manage multiple chain assets

from a single platform. 

Platform: EVM

Language: Solidity

Tags: ERC721, ERC1155, ERC20, Chainlink CCIP

Timeline: 06/02/2024 � 26/02/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/KryptomonDAO/chain-migration-contracts

Commit a36e6a1

2

https://hackenio.cc/sc_methodology
https://github.com/KryptomonDAO/chain-migration-contracts


Audit Summary

10/10 10/10 95% 6/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.4/10
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 1

Vulnerability Status

F�2024�0828 � Unchecked Transfer Operations for ERC20 Tokens Fixed

3

https://portal.hacken.io/App/Projects/Details/637a778d-cae2-46db-986f-1a3c40a90938/Finding/514c6c25-98c5-4379-bce8-578bd623d158


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Kryptomon

Audited By Turgay Arda Usman

Approved By Grzegorz Trawinski

Website https://www.kryptomon.co

Changelog 12/02/2024 � Preliminary Report && 26/02/2024 � Final Report

4

https://www.kryptomon.co/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 10

Vulnerability Details 10

Observation Details 12

Disclaimers 17

Appendix 1. Severity Definitions 19

Appendix 2. Scope 20



System Overview

Kryptomon is a groundbreaking game, that adopts Chainlink CCIP to manage multiple chain assets

from a single platform. It has the following contracts:

KmonMinter  � Minter contract that users interact with.

StakKmonMigrate � The contract that actually mints the NFTs and handles funds transfers to users'

wallets.

Privileged roles

The owner of the KmonMinter.sol contract can modify the source chain, allowed addresses,

withdraw funds, trigger migrations,

The owner of the KmonMigrate.sol can validate and modify tokens for the system, modify the

router and its arguments, modify allowed tokens, withdraw funds, pause the contract

Allowed addresses can  receive ccip messages via KmonMinter.sol

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 6 out of 10.

Functional requirements are partially provided.

Technical description are provided.

Code quality

The total Code Quality score is 10 out of 10.

The code  follows best practices and style guides.

The development environment is configured.

Test coverage

Code coverage of the project is 95.00% (branch coverage), 

Deployment and basic user interactions are covered with tests.

Negative case coverage is taken into consideration.

Interactions by several users are  tested .

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 1 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.4. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The KmonMigrate.sol and KmonMinter.sol owners can withdraw funds from the contract any

time without notifying anyone.

As per the Chainlink documentation the CCIP version 1.0.0 has been deprecated, on mainnet. The

system should take that into consideration.

This audit report focuses exclusively on the security assessment of the contracts within the

specified review scope. Interactions with out-of-scope contracts are presumed to be correct

and are not examined in this audit. We want to highlight that Interactions with contracts outside

the specified scope, such as:

DAOFacet.sol    

LibItems.sol

LibAppStorage.sol

LibERC1155.sol

DAOFacet.sol

ItemsFacet.sol

KmonMigrationFacet.sol

LibKmonMigration.sol

LibKryptomon.sol

KryptomonFacet.sol

LibStrings.sol

ItemsTransferFacet.sol

LibMeta.sol    

LibERC721.sol

              have not been verified or assessed as part of this report.

            While we have diligently identified and mitigated potential security risks within the defined

scope, it is important to note that our assessment is confined to the isolated contracts within this

scope. The overall security of the entire system, including external contracts and integrations beyond

our audit scope, cannot be guaranteed.

             Users and stakeholders are urged to exercise caution when assessing the security of the

broader ecosystem and interactions with external contracts. For a comprehensive evaluation of the

entire system, additional audits and assessments outside the scope of this report are necessary.

              In other words, HACKEN hereby disclaims any responsibility for security issues arising from

interactions with out-of-scope contracts, including but not limited to 

DAOFacet.sol    

LibItems.sol

LibAppStorage.sol

LibERC1155.sol

DAOFacet.sol

ItemsFacet.sol

KmonMigrationFacet.sol

LibKmonMigration.sol

LibKryptomon.sol

8

https://docs.chain.link/ccip


KryptomonFacet.sol

LibStrings.sol

ItemsTransferFacet.sol

LibMeta.sol    

LibERC721.sol

Despite HACKEN's differing opinion on the matter, it is explicitly stated that security checks were not

conducted on these out-of-scope interactions. HACKEN cannot be held liable for any security issues

that may have occurred in connection with these out-of-scope contracts or any issues arising from

the interactions with them, as HACKEN was not granted permission to assess their logic. 

             This report serves as a snapshot of the security status of the audited contracts within the

specified scope at the time of the audit. We strongly recommend ongoing security evaluations and

continuous monitoring to maintain and enhance the overall system's security.

9



Findings

Vulnerability Details

F-2024-0828 - Unchecked Transfer Operations for ERC20 Tokens -

Low

Description: The analysis identified that there are omitted verifications for the return

values of ERC20 transfer functions. This oversight can lead to

vulnerabilities since certain tokens might deviate from the ERC20

standards, either by returning false upon a transfer failure or by not

issuing any return value whatsoever.

function withdrawERC20(

address _tokenAddress,

address _beneficiary,

uint256 _amount

) public onlyOwner {

IERC20 token = IERC20(_tokenAddress);

uint256 contractTokenBalance = token.balanceOf(address(this));

if (_amount > contractTokenBalance) {

revert FailedToWithdrawErc20(

_tokenAddress,

_msgSender(),

_beneficiary,

_amount,

contractTokenBalance

);

}

bool success = token.transfer(_beneficiary, _amount);

if (!success)

revert FailedToWithdrawErc20(

_tokenAddress,

_msgSender(),

_beneficiary,

_amount,

contractTokenBalance

);

}

Functions that transfer do not use SafeERC20 and do not check return

value of transfers:

withdrawERC20()

Assets:
KmonMinter.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

Status: Fixed

Classification

10

https://portal.hacken.io/App/Projects/Details/637a778d-cae2-46db-986f-1a3c40a90938/Finding/514c6c25-98c5-4379-bce8-578bd623d158


Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 3

Exploitability �0�2�� 2

Complexity �0�2�� 1

Final Score: 2.0 (Low)

Recommendations

Recommendation: Implement the SafeERC20 library to check the return value of the calls

to ERC20 transferand transferFrom, as well as  interacting safely with

tokens that do not return anything at all

Remediation

�Commit:89402c8da38be7d7c6f8ba7e6786dd89c7f7e940 �� The

SafeERC20 library has adopted.

11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol


Observation Details

F-2024-0827 - Floating Pragma - Info

Description: The project uses floating pragmas 0.8.20 and 0.8.17

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Additional assets affected:

contract-eab6af91ae.sol:

https://etherscan.io/address/0xc4170fd71eced3c80badca77f4e12e8a

ac1e3436#code

Assets:
KmonMigrate.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

KmonMinter.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

ItemTypes.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs

(https://github.com/ethereum/solidity/releases) for the compiler version

that is chosen.

Remediation �Commit:

2325f0431ebe9676800e0a4aa146d6d2da4976d8 �� The pragma

version is locked.

12

https://portal.hacken.io/App/Projects/Details/637a778d-cae2-46db-986f-1a3c40a90938/Finding/ff743b36-c21e-424c-ad4a-50f7ada1eda6
https://etherscan.io/address/0xc4170fd71eced3c80badca77f4e12e8aac1e3436#code
https://github.com/ethereum/solidity/releases


F-2024-0830 - Out-of-Gas Error Due to Excessive Loop Iterations

Edit Write comment Edit - Info

Description: Removing and setting allowed tokens are handled in batches. While doing

so, the related functions, setAllowedTokens() and

removeAllowedTokens(), accept array parameters, and then iterate

through them. This extensive looping may exceed the maximum block Gas

limit, leading to a revert with out-of-gas errors and rendering the

setAllowedTokens() and removeAllowedTokens() functions

unusable.

function setAllowedTokens(

address[] calldata _tokenAddress,

uint8[] calldata _assetType,

address[] calldata _receiver,

address[] calldata _targetToken,

uint64[] calldata _targetChain

) external onlyOwner {

if (_tokenAddress.length != _assetType.length)

revert LengthMismatch("tokenAddress-assetType");

if (_assetType.length != _receiver.length)

revert LengthMismatch("assetType-receiver");

if (_receiver.length != _targetToken.length)

revert LengthMismatch("receiver-targetToken");

if (_targetToken.length != _targetChain.length)

revert LengthMismatch("targetToken-targetChain");

bytes32 combinedHash;

for (uint256 i; i < _tokenAddress.length; ) {

require(_assetType[i] <= 2, "assetType > 2 not allowed");

require(allowedTargetChains[_targetChain[i]], "targetChain not allow

ed");

// Calculate the hash of the concatenated address and uint8 value

combinedHash = getCombinedHash(_tokenAddress[i], _assetType[i]);

emit AllowedTokenAdded(

_tokenAddress[i],

_assetType[i],

_receiver[i],

_targetToken[i],

_targetChain[i],

combinedHash

);

tokenInfo[combinedHash] = Token({

allowed: true,

tokenAddress: _tokenAddress[i],

assetType: _assetType[i],

receiver: _receiver[i],

targetToken: _targetToken[i],

targetChain: _targetChain[i]

});

unchecked {

i++;

}

}

}

Assets:
KmonMigrate.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

13

https://portal.hacken.io/App/Projects/Details/637a778d-cae2-46db-986f-1a3c40a90938/Finding/c28e21cf-3bb4-4d58-b044-88058f82bf95


Status: Fixed

Recommendations

Recommendation: Set a reasonable upper limit for the maximum number of transactions

processed within these functions.

Remediation �Commit:

2325f0431ebe9676800e0a4aa146d6d2da4976d8 �� The following

check has been implemented:

if (_tokenAddress.length > 100)

revert ArrayTooBig("Total allowed tokens must be equal or less than

100");

14



F-2024-0831 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. 

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.  

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

The constructors in withdrawNative() and withdrawERC20()

functions are lack of missing zero address validation.

Assets:
KmonMigrate.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

Status: Fixed

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Remediation �Commit:

2325f0431ebe9676800e0a4aa146d6d2da4976d8 ��  Zero address has

been implemented.

15

https://portal.hacken.io/App/Projects/Details/637a778d-cae2-46db-986f-1a3c40a90938/Finding/6dacc002-ed1f-4288-a7db-f2c84e8af0b3


F-2024-0832 - Redundant Receive() Function - Info

Description: The Kryptomon project benefits from the CCIP architecture of Chainlink.

This allows its users to send messages between chains. The implemented

architecture states that the  designed flow is from

KryptomonMigrate.sol to KryptomonMinter.sol contract. This

means that no funds will be transferred from minter to migrator contract,

this makes the receive() function implemented in the

KryptomonMigrate.sol contract redundant.

Assets:
KmonMigrate.sol [https://github.com/KryptomonDAO/chain-migration-

contracts]

Status: Fixed

Recommendations

Recommendation: It is recommended to remove this function to prevent any accidental fund

transfers to the contract.

Remediation �Commit:

2325f0431ebe9676800e0a4aa146d6d2da4976d8 �� The redundant

function has been removed.

16

https://portal.hacken.io/App/Projects/Details/637a778d-cae2-46db-986f-1a3c40a90938/Finding/08462160-75ec-44e6-b57e-ab4064691d11


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

Risk Disclaimer

This audit report focuses exclusively on the security assessment of the contracts within the specified

review scope. Interactions with out-of-scope contracts are presumed to be correct and are not

examined in this audit. We want to highlight that Interactions with contracts outside the specified

scope, such as:

DAOFacet.sol    

LibItems.sol

LibAppStorage.sol

LibERC1155.sol

DAOFacet.sol

ItemsFacet.sol

KmonMigrationFacet.sol

LibKmonMigration.sol

LibKryptomon.sol

KryptomonFacet.sol

LibStrings.sol

ItemsTransferFacet.sol

LibMeta.sol    

LibERC721.sol

17



have not been verified or assessed as part of this report.

While we have diligently identified and mitigated potential security risks within the defined scope, it is

important to note that our assessment is confined to the isolated contracts within this scope. The

overall security of the entire system, including external contracts and integrations beyond our audit

scope, cannot be guaranteed.

Users and stakeholders are urged to exercise caution when assessing the security of the broader

ecosystem and interactions with external contracts. For a comprehensive evaluation of the entire

system, additional audits and assessments outside the scope of this report are necessary.

In other words, HACKEN hereby disclaims any responsibility for security issues arising from

interactions with out-of-scope contracts, including but not limited to 

DAOFacet.sol    

LibItems.sol

LibAppStorage.sol

LibERC1155.sol

DAOFacet.sol

ItemsFacet.sol

KmonMigrationFacet.sol

LibKmonMigration.sol

LibKryptomon.sol

KryptomonFacet.sol

LibStrings.sol

ItemsTransferFacet.sol

LibMeta.sol    

LibERC721.sol

Despite HACKEN's differing opinion on the matter, it is explicitly stated that security checks were not

conducted on these out-of-scope interactions. HACKEN cannot be held liable for any security issues

that may have occurred in connection with these out-of-scope contracts or any issues arising from

the interactions with them, as HACKEN was not granted permission to assess their logic. 

This report serves as a snapshot of the security status of the audited contracts within the specified

scope at the time of the audit. We strongly recommend ongoing security evaluations and continuous

monitoring to maintain and enhance the overall system's security.

18



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

19

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/KryptomonDAO/chain-migration-contracts

Commit 2325f0431ebe9676800e0a4aa146d6d2da4976d8

Whitepaper -

Requirements provided as files

Technical Requirements provided as files

Contracts in Scope

./contracts/KmonMigrate.sol

./contracts/KmonMinter.sol

./contracts/interfaces/IDiamond.sol

./contracts/interfaces/IERC20.sol

./contracts/interfaces/IERC721.sol

./contracts/utils/ItemTypes.sol

contract-eab6af91ae.sol:

https://etherscan.io/address/0xc4170fd71eced3c80badca77f4e12e8aac1e3436#code

20

https://github.com/KryptomonDAO/chain-migration-contracts
https://etherscan.io/address/0xc4170fd71eced3c80badca77f4e12e8aac1e3436#code



