

NODE SECURITY REVIEW REPORT

This document may contain confidential information about IT systems and intellectual property of the customer as well as information about potential vulnerabilities and methods of their exploitation. The report containing confidential information can be used internally by the customer or it can be disclosed publicly after all vulnerabilities fixed - upon decision of customer.

Document

Name	Node Security Review for Ambrosus
Platform	Ethereum / Javascript
Date	04.02.2019
Node Link	https://github.com/ambrosus/ambrosus-node
Node Commit	9c36109464a481e8e42de673a75590b059595553
Node Branch	master
NOP Link	https://github.com/ambrosus/ambrosus-nop
NOP Commit	79e20f5d3948f7b397e81f148a1aae04c472a25b
NOP Branch	master

Team Composition

Blockchain Security Lead	Pavlo Radchuk – PR
Offensive Services lead	Eduard Babych - EB
Application Security Engineer	Vadym Shovkun – VS
Application Security Engineer	Danil Matveev - DM
Blockchain Security Engineer	Serhii Okhrimenko - SO
Blockchain Security Engineer	Evgenii Marchenko - EM

Table of contents

Introduction

Hacken OÜ (Consultant) was contracted by Ambrosus (Customer) to conduct a Node Security Review. This report presents the findings of the security review of Customer`s codebase conducted between January 25th, 2019 – February 4th, 2019.

Scope

The scope of the project is node codebase and NOP scripts of Ambrosus project.

The scope of tasks performed during the project is listed below:

- 1. Finalize Scope
- 2. Setup nodes
- Review of cryptoeconomics specification against potential threats
- 4. Understanding the system by using its functionality
- 5. Permission checks against matrix
- 6. Calculate collision probability analyze to write a report
- 7. Auto scanning of the codebase
- 8. Analyze node upgradeability mechanism
- 9. Review NOP script and analyze potential threats
- 10. Dump and analyze traffic between nodes
- 11. Privilege escalation
- 12. Docker escape testing

13. Fuzzing of APIs (all parameters in GET, POST, PUT requests)14. NoSQL injection testing

15. Testing and code review of token generation

16. Manual review of timeout mechanism

17. Manual review of auto scanner findings

18. Analysis of KYC process

19.Manual code review for immutability of data (Merkle proofs
 etc.)

20. Analyze potential deserialization vulnerabilities

21. Web pentest for Hermes client side

22. Network discovery + scanning of the nodes

23. DDoS simulation

24. Analyze private key storage and usage

25. Analysis of cryptography implementation

26. Report development

Executive Summary

Hacken team performed security review for the Customer system. The project focus was on 2 factors – web/network penetration testing for the deployed nodes and blockchain security assessment for node codebase and NOP script.

The scope of the work was agreed with Customer at the start of the project and the review was conducted covering the scope. The

scope includes attacks on all endpoints that are simulated for 4 main classes of potential attackers:

- external attacker
- external attacker with access to API
- attacker that hosts Hermes node
- attacker that hosts Atlas/Apollo node

Hacken security consultants imitated the hacker activities to test the overall security state of the system.

The security review identified 3 high, 4 medium, 2 low and 7 lowest/best practice issues.

Most of medium and high-level vulnerabilities were already known by the Customer and for the moment work as expected.

According to the review auditors evaluate the security state of the system as moderate.

Severity Definitions

Risk Level	Description			
High	High-level vulnerabilities are easy in exploitation and may provide an attacker with full control of the affected systems, also may lead to significant data loss or downtime. There are exploits or PoC available in public access.			
MediumMedium-level vulnerabilities are much harder to exploit and may not provide the same access to affected systems. No exploits or PoCs available in public access. Exploitation provides only very limited access.				
Low-level vulnerabilities provide an attacker with information that may assist them in conducting subsequent attacks against target information systems or against other information systems, which belong to an organization. Exploitation is extremed difficult or impact is minimal				
Lowest / Code Style / Best Practice	Lowest / Code Style / Best Practice These vulnerabilities are informational and can be ignored.			

The distribution of Findings

Ambrosus Node and NOP Security Review

This section describes all performed actions against the target system. We outline task name, responsible, steps performed and findings with comments for each task.

0	Finalize Scope	Responsible	PR
Cool	Do decomposition of project, cre	ate detailed	task list
GUAL	for the security review		
	Steps Performed		
Consu	ltant team had kick-off meeting w	ith Customer	engineers.
Secur	ity engineers analyzed the pote	ntial threat	s for the
syster	n and formed a scope of the work		
	Findings and Commen	its	
Durin	g the kick-off meeting auditors	understood	the main
archi	tectural concepts of the system	- there a	re 4 main
poten	tial attacker classes: externa	l attacker,	external
attacl	ker with access to API, attacker	that hosts H	lermes node
and a	ttacker that hosts Atlas/Apollo ne	ode. Security	engineers
also	obtained all necessary information	to proceed	with other
tasks			

1	Setup nodes	Responsible	SO		
Goal	Setup 3 types of nodes (Apollo, future testing	Hermes and	Atlas) for		
Steps Performed					

SO launched instances for each type of nodes; installed nodes with their dependencies; sent request to approve nodes' addresses.

Findings and Comments

Apollo, Atlas and Hermes nodes were deployed on Digital Ocean servers via NOP scripts. Parity client didn't sync with Ethereum network by default on each node. We needed to set "warp" parameter to true in parity_config.toml in order to start the nodes.

2	Review of cryptoeconomics specification against potential threats	Responsible	PR/EM			
Goal	Find high-level issues related to	system archit	ecture			
	Steps Performed					
Consu	ltants read the specification; a	nalyzed what	potential			
threat	ts could be applied to the	system; fin	d obvious			
archi	tecture issues					
	Findings and Comments					
Crypto	Cryptoeconomics specification is the document that describes					
system architecture. One of the main architectural concepts of						
the s	the system is that main logic and verifications are handed down					
to sr	to smart contracts. Overall architecture security state is					
good, consultants found only 1 medium issue related to the specification.						

3	Understanding the system by using its functionality	Responsible	Team			
Goal	Gain deeper understanding of	a system by	/ security			
	consultants					
	Steps Performed					
Consu	Consultants followed the documentation and manually called					
different API functions of the node. Monitored the systems						
behav:	behavior via explorer, logs and proxies					
Findings and Comments						
No issues were discovered during manual test of the system. All						
the functions that were called by auditors worked as expected						

4	Permission checks against matrix	Responsible	EM			
Goal	Confirm that permissions within t	he system are	e correctly			
	Impremented					
	Steps Performed					
Audito	Auditors requested permission matrix and manually compared					
impler	implementation logic against available documentation					
Findings and Comments						
Permis	ssions are correctly implemented	I - all act	tions that			
requi	re verification limit access	as expec	ted. Code			
impler	implementation fully follows permissions matrix.					

5	Calculate collision probability -	Responsible	PR
	analyze to write a report		

Goal	Verify that the collision can't have significant impact					
	on system					
	Steps Performed					
Calcu	late the probability of collision for 1 billion of					
diffe	rent entries. Analyze the impact of random id collision					
	Findings and Comments					
IDs i	in the systems are hashes of the serialized json. We					
calcu	lated the probability of collision for a billion of					
entri	es and it was less than 10^-10 %. We were informed by the					
custo	customer that in case of collision for the assets and events					
Herme	s node will just refuse to create second event/asset with					
ident	ical id; in case of bundles, it just won't be uploaded to					
the n	etwork. It means that collision can't have serious impact					
on the	e system					

6	Autosca	anning of	the code	ebase	pase Responsible		EM	
Cool	Check	against	typical	securit	y issues	pati	terns	with
GUAL	multip	le securit	ty analys	sis tools				
	-		Steps	Performe	ed			
Consu	ltants	launched	and com	oleted st	tatic code	anal	ysis	using
Х, Ү,	Ζ, Τ	applicati	ions sec	urity sca	anners. Aud	litor	s also	o run
softwa	software composition analysis tools - npm audit and snyk							
	Findings and Comments							
The o	utcome	of statio	c securit	zy scanne	rs executi	on wa	as: sc	anner
X fou	X found 3 medium and 10 low issues; scanner Y found 1 critical							
and 2	and 2 medium issues; scanner Z found 7 medium issues; scanner T							
haven	naven't found any issues; npm audit found 1 medium and 1 low							

issues; snyk found 1 high issue. These findings were manually reviewed during the task 16 of the project

7	Analyze node upgradeability mechanism	Responsible	PR	
Goal	Ensure that all nodes can securely bugfixes	v update afte	r important	
	Steps Performed			
Secur	ity engineers requested info	ormation ab	out node	
upgrad	deability process. After that	auditors and	alyzed the	
poten [.]	tial security issues of the process			
	Findings and Commen	nts		
"Each	node owner is responsible for up	odating the r	odes. When	
Custor	mer releases the security update, i	it notifies no	ode holders	
via e	via emails gathered from KYC. After receiving notification node			
owner	should manually update the node -	- login to no	de and run	
update	update.sh. Customer can check the current version of the node			
via node_info request. However, Customer don't have any				
integrity checks and the value can be abused.				
Docker don't setup latest containers so it won't update Parity				
or otl	ner in case of updates."			

8	Review NOP script and analyze potential threats	Responsible	SO
Goal	Verify that NOP algorithm of gene correct and the node is secure by o	rating config default	files are

12

Steps Performed
Consultants manually reviewed the source code of NOP; analyzed
potential threats during setup process
Findings and Comments
NOP defines the default node configuration after set up. No
potential attack vectors were discovered during review.
However, there are no SSL advisory in NOP, default node will
establish only HTTP connections without encryption.

9	Dump and analyze traffic between nodes	Responsible	EB
	Record and analyze traffic on	three nodes	s (Apollo,
Goal	of each node and discovery the	IP-addresses	of other
	nodes. In the future, this inform	nation will b	e used for
	"DDoS" testing and "Network disco	overy + scann	ing of the
	nodes" testing		

Steps Performed

Record traffic through "tcpdump":

Analyze traffic through "Wireshark and NetworkMiner"

Nodes:

- Apollo 139.59.208.7
- Hermes 207.154.249.42
- Atlas 46.101.137.241

Findings and Comments

Since all addresses of the nodes are known from the traffic analysis, the hacker can conduct a targeted attack on each of the nodes separately. We recommend in the description on the launch of the node to make basic recommendations * Move nginx to another docker container * Make a white list for connection via ssh and set up a connection only by keys * Use only large(AWS, DO, etc) cloud providers.

10	Privilege escalation	Responsible	EB	
	Obtain high-level privileges (e.g	. root privi	leges) and	
Goal	make their way to critical system	s without be	ing noticed	
	(docker, nginx, source code, priva [.]	te key).		
	Steps Performed			
When	testing, we used several users wit	h low privil	eges on the	
sourc	e system (docker, ubuntu, test).			
Sourc	e system:			
•	AWS machine image 'ambrosus-nop'			
•	DO pre-installed ubuntu 18.4			
List	of tests:			
Testi	ng exploiting Kernel and Operating	System		
Testi	Testing exploiting Applications and Services			
Testi	Testing exploiting Services which are running as root			
Testing exploiting SGID/SUID misconfiguration				
Testi	Testing exploiting sudo rights/user			
Testi	ng exploiting badly configured cron	jobs		

Testing exploiting Shell Escape Testing exploiting Symlinks Testing exploiting Buffer Overflow Testing exploiting Weak/reused/plaintext passwords

Testing exploiting Bad path configuration

Findings and Comments

The tests did not show the presence of vulnerabilities, but we recommend setting up auto-update for all used services (kernel, ssh, nginx, docker, etc.)

11	Docker escape	testing	Responsible	EB
Goal	Our goal was kernel or vul access to the	to escape front nerabilities in node.	om the container on the docker itsel	l using the f to gain
		Steps Perfo	rmed	
• Te	sting	all CVE	s for	docker
(h	ttps://www.cve	details.com/pro	oduct/28125/Docker-I	Docker.ht
m)				
● Te	sting Kernel v	ulnerabilities		
● Te	sting misconfi	guration		
		Findings and Co	omments	
Docker	container esca	aped will gener	ally use Docker Da	emon file
parsing	vulnerabilit	ies, system k	ernel privilege e	scalation
vulnera	bilities and	other means,	to achieve the pu	irpose of
elevati	ng user rig	hts and brea	k the original	isolation
mechani	sm restrictior	ns. According	to its use of vuln	erability
points	can be summa	rized as the	use of Docker Dae	emon file

parsing vulnerabilities to achieve the escape; the use of Docker container environment misconfigurations to achieve escape; use of kernel vulnerabilities to achieve escape three cases. Docker Daemon needs to compile the Dockerfile file, parsing image files, if the external input without filtering, when triggered to Docker Daemon loopholes, may cause container escaped. In the early version of the docker, compiling the Dockerfile files deformed and Improper parsing specially constructed soft link file in the images would cause arbitrary code execution, they all belong to this kind of escape problem. Kleindienst described in the article when mounted the /var/run/ directory to the container will lead to container escape, and if the CAP_DAC_READ_SEARCH privilege is given to the container by default can cause an arbitrary file access attack, they all belong to misconfiguration escape problem. Because the Docker container and the host share the kernel, privilege same escalation vulnerabilities in the Linux kernel and driver can be used to achieve container escape. Jian, Z in their paper point out that can though be switching namespaces or through modifying shared memory achieve container escape.

During testing was not found possible to escape from the container, but if you do not carry out regular updates of the docker and the image of the AWS 'ambrosus-nop' machine, this feature may appear

12	Fuzzing of APIs (all parameters	Posponsible	
12	in GET, POST, PUT requests)	Responsible	V 37 DM

Goal	ind errors in the	API. Bypass ap	plication logic.		
	Accessing hidden data. C	ause the node to	stop working		
	Steps	Performed			
 Circumvent authentication and authorization mechanisms Escalate user privileges Hijack accounts belonging to other users Violate access controls placed by the administrator Alter data or data presentation Corrupt application and data integrity, functionality and performance Circumvent application business logic Circumvent application session management Break or analyze use of cryptography within user accessible components Sending requests with raw data Sending requests in the wrong format 					
During	testing, no vulnerabil:	ities were found	in the API. There		
is one	e potential flaw that	you can find in	n"Security Review		
Findin	gs"				
Method	REFERENCE	NoSQL injection	Fuzzing		
POST	Create token	Protected	Protected		
POST	Add account	Protected	Protected		
GET	Find account	Protected	Protected		
GET	GET Get account Protected Protected				
PUT	Modify account	Protected	Protected		
POST	Create an asset	Protected	Protected		
GET	Fetch an asset by id	Protected	Protected		
GET	Find assets	Protected	Protected		
POST	Create an event	Protected	Protected		

GET	Fetch event	Protected	Protected
GET	Find events	Protected	Protected
GET	Fetch bundle	Protected	Protected
GET	Fetch bundle metadata	Protected	Protected
GET	Get node info	Protected	Protected

13	NoSQL injection testing	Respo	nsible	VS/DM	
Goal	Goal Gaining access to the database through NoSQL injection				
	Steps	Performed			
All r	equests were checked in	manual and aut	omatic	format for	
the pr	resence of NoSQL injectio	n.			
	Findings	and Comments			
During	; testing, no vulnerabili	ties were found	in the	API.	
Metho	d REFERENCE	NoSQL injection	Fuzzin	ıg	
POST	Create token	Protected	Protec	ted	
POST	Add account	Protected	Protec	ted	
GET	Find account	Protected	Protec	ted	
GET	Get account	Protected	Protec	ted	
PUT	Modify account	Protected	Protec	ted	
POST	Create an asset	Protected	Protec	ted	
GET	Fetch an asset by id	Protected	Protec	ted	
GET	Find assets	Protected	Protec	ted	
POST	Create an event	Protected	Protec	ted	
GET	Fetch event	Protected	Protec	ted	

GET	Find events	Protected	Protected
GET	Fetch bundle	Protected	Protected
GET	Fetch bundle metadata	Protected	Protected
GET	Get node info	Protected	Protected

14	Testing and code review of token generation	Responsible	PR		
	Verify that token is generated	securely and	d attacker		
Goal	is secure	at token auth	nentication		
	Steps Performed				
Secur	ity engineers analyzed when tok	ken is used;	; manually		
review	wed the code responsible to token g	eneration			
Findings and Comments					
Customer is aware and confirm that token should be used only					
for t	for testing purposes and its usage is insecure by design.				
Custor	Customer don't recommend using the token in the mainnet.				
However, it is much more convenient for node holders to use the					
token and they can enable token authentication. Overall process					
of tol	of token generation is secure				

15	Manual review of timeout mechanism	Responsible	PR
Goal	Verify that default protection fr effective	om DDoS and h	igh-load is

19

Steps Performed

Auditors analyzed the mechanisms of timeouts for the node while receiving requests

Findings and Comments

By default, Nodes don't have any application limits for requests; NOP don't recommend to implement any kind of DDoS protection, thus, there is no DDoS and high-load protection for the nodes. Timeout mechanism is implemented on nginx side on Customer servers. This mechanism was tested against DDoS during task 22 of the project.

16	Manual review of autoscanner findings	Responsible	EM
Goal	Discard all false positives f findings during stage 6 of the pro	rom security ject	v scanners
	Steps Performed		
Secur: autoso	ity consultants manually reviewed canners and tested their applicabil	d the findin ity	gs of the
	Findings and Commen	its	
Scanne	ers X, Y, Z, T together with npm a	audit and sny	k found 22
diffe and no	rent security issues. All of them one of them were valid.	were manuall	y reviewed.

17	Analysis of KYC process	Responsible	PR
Goal	Verify that risk of malicious node	set up is lo	W
	Steps Performed		

20

Consultants obtained all information about the KYC process; analyzed the security risks of the process

Findings and Comments

"There are 2 different types of KYC processes for the node holders:

1. For Hermes node holders - the KYC process is light and most of the people can pass this KYC. It is done because Hermes node holders spend money in the system and difficult KYC process can push away potential Customer clients to deploy the node. As far as it is easy to pass Hermes KYC, Hermes node holder should be considered as attacker for other checks

2. For Atlas and Apollo node holders - the KYC process is more difficult. Firstly, KYC applicant should provide the proof of identity (for example, passport), secondly KYC applicant should provide proof of residence, lastly, Ambrosus does third-party background checks against applicant.

Note. KYC process for Atlas node is not currently implemented. Customer informed us that the process will be similar to Apollo node KYC

Considering all of the above, the risk of attacker being Apollo/Atlas node holder is low and Hermes endpoint might be used attacker for malicious activity"

	Manual code review for		
18	immutability of data (merkle	Responsible	EM
	proofs etc.)		

H	E		H		N	
Document	is	prepa	ared	by	Hacken	OU
	hu	ub.had	cken	.io		

Verify the correctness of all tasks related to Ethereum Goal blockchain. Confirm that the node correctly validates bundles, events and assets

Steps Performed

Auditors manually reviewed the implementation of bundles, events and assets validation; compared implementation logic against available documentation.

Findings and Comments

The node uses web3 package for all interaction with Ethereum blockchain. The implementation complies with best practices. The node uses ajv (https://www.npmjs.com/package/ajv) package to validate received data against JSON schemas. JSON schemas used in the system comply with documentation. No issues related to the data immutability were found

19	Analyze potential deserialization vulnerabilities	Responsible	PR
Goal	Verify that serialization and des	erialization	is done in
	secure way		
	Steps Performed		
Audito	ors analyzed how and what data ty	ypes are seri	alized and
deser	ialized. Manually reviewed the	code of t	he object:
seria	lization, particularl	У	against
https	://www.acunetix.com/blog/web-securi	ty-zone/deser	ialization
-vulne	erabilities-attacking-deserializati	on-in-js/	
	Findings and Commer	nts	

System mostly uses serialization to store the json in the database or calculate a hash of the data. JSON.stringify and JSON.parse are used for json serialization and deserializations that is considered to be secure. Moreover, all json data is validated against predefined schema. Serialization for objects is used only in serializeForHashing function, however the objects passed to the function are never deserialized. It means that code injection via deserialization can't be performed.

20	Web pentest for Hermes client side	Responsible	VS/DM
Goal	Search for errors and vulnerabilit such as xss, sqli, ssti, csrf, ido	r etc.	oplications
	Steps Performed		
Clien of g inclu The s	t is requesting Consultant assista rey-box web application security de the following components: Architecture security review Web applications described in the s Mapping application code against OWASP ASVS (https://goo.gl/NB9NT6) tated objectives of this assessment Circumvent authentication and author Escalate user privileges Hijack accounts belonging to other Violate access controls placed by Alter data or data presentation Corrupt application and data integ and performance Circumvent application business log Circumvent application session mana Break or analyze use of crypto accessible components	ance in the p assessment industry best are: orization mech users the administra grity, function gic agement graphy withi	performance that will practices hanisms ator onality n user

23

Application will be verified for common vulnerabilities such as the OWASP Top 10, logical mistake of application work.

Findings and Comments

For all sites, we recommend connecting WAF and DDoS protection or using a professional/corporate plan in the CloudFlare. You can look at all found defects in "Security Review Findings"

21	Network discovery + scanning of the nodes	Responsible	EB
Goal	Identify active hosts and service number of in-scope active IP add user nodes. We received this li analyzing traffic.), and assess those systems. Attempt to vulnerabilities and demonstrate vulnerabilities.	s, for up to dresses (Main st while rec a security o exploit the impact	the total nodes and ording and posture of identified of those
	Steps Performed		
Getti	ng a list of active nodes and scann	ing for vulne	rabilities
	Findings and Commer	its	
During netwo	g testing, no vulnerabilities were rk.	e found in th	ne external

22	DDoS simulation	Responsible	EB
	Check the operation of the c	cloud provider, o	check the
Goal	system response to DDoS (HTTP,	TCP, UDP), find	flaws in
	the operation of the system and	d its response to	DDoS

	Step	os Performed		
Test cases (Comr	non DDoS atta	ck vectors (L	_3, L4 & L7)):
1. HTTP get floo	bd			
2. SYN flood				
3. HTTP slowlor:	is			
4. ICMP flood				
The speed of loa	ad testing va	ries from 100) MB/s to 6	-7 GB/s
	Finding	s and Commen	ts	
With a DNS floo	d, the serve	r crashed in	a few minu	ites, but aws
quickly blocked	malicious tr	affic		
Host	Туре	0-1000 MB/s	2-10 GB/s	10-50 GB/s
24.247.02.122				
34.247.98.162	UDP Flood	PASS	PASS	PASS
13.126.51.11	UDP Flood	PASS	PASS	PASS
52.215.227.185	UDP Flood	PASS	PASS	PASS
34.247.98.162	TCP Flood	PASS	PASS	PASS
		1 433	1 435	1 433
13.126.51.11	TCD Flood	DACC	DACC	DACC
	ICP FIOOD	PASS	PASS	PASS
52.215.227.185				
	ICP Flood	PASS	PASS	PASS
34.247.98.162				
	DNS Flood	PASS	PASS	PASS
13.126.51.11	DNS Flood	PASS	PASS	PASS

52.215.227.185	DNS Flood	PASS	PASS	PASS
34.247.98.162	30303 Flood	PASS	PASS	PASS
13.126.51.11	30303 Flood	PASS	PASS	PASS
52.215.227.185	30303 Flood	PASS	PASS	PASS
2.73 GB 2.5 GB 2 GB 1.5 GB 1 GB 500 MB 0 B 05 PM 09 P	M Mon 04	03 AM 06 AM	09 AM	Cached Uncached
05 PM 09 P	Mon U4	U3 AIVI U6 AM Time (local)	09 AM	12 PW 04 PM

23	Analyze private key storage and usage	Responsible	PR/EM	
Goal	Verify that private key is stored can't get a private key if he gets	d securely ar access to th	nd attacker e host	
Steps Performed				
	Steps Performed			
Consu	Steps Performed Ltants searched for the private ke	y on the host	t; analyzed	
Consu: where	Steps Performed ltants searched for the private ke private key is stored or used in t	y on the host he codebase	t; analyzed	

Private key is used for all signatures - to sign assets, events and bundles. This is the only functionality that uses a private key. Private key is stored in clear text on the node in docker-compose.yaml and state.json files. During code review auditors also discovered that private key can be written to the logs in some conditions.

24	Analysis of cryptography implementation	Responsible	EM
Goal	Verify that all cryptography us	ed is impler	nented/used
	correctly		
	Steps Performed		
Audito	Auditors searched for crypto primitives in the codebase and		
dependencies			
Findings and Comments			
The o	nly crypto primitives used within t	the system are	e keccak256
for h	ashing and ECDSA for signing and	d verifying s	signatures.
These	These functions are implemented in web3 library, no custom		
cryptography is used within the project. Considering			
abovementioned the cryptography implementation is secure.			

25	Report development	Responsible	EB/PR	
Goal	Prepare final report that will be	presented to	Customer	
	Steps Performed			
Assem	ble description of all steps per	formed by th	e team and	
corresponding findings				

	Findings and Comments
N/A	

Document is prepared by Hacken OU hub.hacken.io

Security Review Findings

The section contains all security and best practice findings found during security review with their severities, impact and mitigation recommendations.

1 Private key is logged Se	everity	High	
Description			
Private key is logged via `logger.info('Se	cret:		
<pre>\${account.secret}');` during node initiali</pre>	zation.		
Impact			
It might be easier for the attacker to stole private key from			
the logs than from the node itself			
How to mitigate			
Don't log private key anyway. It is rec	ommended	not to work	
directly with the private key.			
Corresponding task in security review		23	

2	Private key and passwords for unlocking accounts are stored as plain text on the node	Severity	High	
Descr	iption			
Priva	te key in docker-compose.yaml and s	tate.json	files and	
password for unlocking accounts (signer, private account,				
validators) are stored as plain text on the node.				
Impact				
If at	If attacker gets access to the node - he gets access to the			
Ethereum private key. He can withdraw all the founds on the				
account using it				
How to mitigate				

We recommend using signer middleware for the system. It can be deployed in separate container and contain a private key that never leaves the signer. Node can request transactions sign from the signer to validate bundles. The signer should have filter that whitelists transaction only necessary transactions, for example, to sign a bundle. If attacker gets the node, he could only execute whitelisted access to transaction and he can't transfer funds from it. In order to obtain a private key, he will need to get access to the key signer, where private is stored. Clef (https://github.com/ethereum/go-ethereum/tree/master/cmd/clef) is an example of signer implementation. Clef's security can be used for the system. Corresponding task in security review 23

3	Yoast SEO Authenticated Race Condition	Severity	High
Descr	iption		
Curre	nt Yoast version has a race conditi	on vulnera	bility which
leads	to command execution. The command	executions	can be
exploited with any SEO Manager role account. The detailed			
description of vulnerability can be found here -			
https://thattechguy.com.au/yoast-seo-authenticated-race-condit			
ion/			
<pre>Vulnerable endpoint https://tech.ambrosus.com/</pre>			
Impact			

Vulnerability allows you to elevate your privilege	s on the
server and execute commands from a privileged user	
How to mitigate	
Consider upgrading Yoast SEO to the latest version	
Corresponding task in security review	20

4	Penalty calculation issue	Severity	Medium	
Descr	iption			
The f	ormula for Penalty calculation is t	he followi	ng.	
Per	alty calculation			
Giver	:			
$n_i = r$	 S - stake for the offending node t_i - time since previous offence n_i - number of penalties imposed on offending node in a uninterrupted run. Strictly: 			
$n_i = 0$	otherwise			
Then	penalty P _i is calculated:			
$P_i =$	$= S * \left(\frac{2}{100}\right)^{n_i}$			
Thus, numbe	Thus, the penalty withdrawn exponentially decreases with the number of punishments.			
Since	\sum_{i=1}^{\infty}(2/100)^i = 1/4	19 \approx	0.0204, the	
offen	offending node will be fined in total for all times not more			
than 3% of the stake				
Impact				
1) Th will	e more the node will be punished, t have the others to challenge it.	he less mo:	tivation	

2) The reward for sheltering is given to the node continuously. Thus, the node that was punished several times will still be able to profit even in case of challenges How to mitigate

Consider reviewing the penalty formula making the penalty exponentially increasing instead of decreasing

Corresponding task in security review

MongoDB access control is not 5 Severity Medium implemented Description Organization with Hermes node might have read access to other organization bundles. The issues are known and confirmed by Customer. Customer already works on the fix. Impact Attacker who setup malicious Hermes node might have read access to all bundles within the system How to mitigate Implement access control for Hermes nodes for MongoDB - Hermes node should have access to their local database and don't have access to all bundles Corresponding task in security review 3

6	Docker images for parity and mongo doesn't use latest images	Severity	Medium	
Description				
NOP configures docker-compose.yml with non-latest version of				
docker images for parity and mongo (parity/parity:v2.0.8 and				
mongo:4.1)				

2

Impact

Old versions of the docker images potentially contain unfixed bugs and vulnerabilities

How to mitigate

Change all versions to latest in the NOP

Corresponding task in security review

WordPress XML-RPC authentication 7 Severity Medium brute force Description The XML-RPC API that WordPress provides gives developers a way to write applications (for Customer) that can do many of the things that you can do when logged into WordPress via the web interface. The main weaknesses associated with XML-RPC are: Brute force attacks: Attackers try to login to WordPress using xmlrpc.php Vulnerable endpoint https://tech.ambrosus.com/xmlrpc.php Impact A hacker can find the right combination login / password combination for https://tech.ambrosus.com/ and access the server How to mitigate It is necessary to disable the XML-RPC on https://tech.ambrosus.com/ Corresponding task in security review 20

8	Synchronization fails with warp == false	Severity	Low
---	--	----------	-----

8

Description

NOP generates parity_config.toml with warp == false by

default. It makes synchronization unavailable.

Impact

It is not easy to understand where is problem and potentially could lead to bigger issues during fixing process.

How to mitigate

Set warp == true for synchronization.

Corresponding task in security review

9	No SSL configuration in NOP	Severity	Low	
Descr	iption			
After	NOP configuration nodes accept htt	p by defau	lt.	
Impac	Impact			
Default configuration of a masternode makes man-in-the-middle				
attack possible.				
How to mitigate				
Accept only https requests, add https configuration to the NOP				
Corre	sponding task in security review		8	

10	Outdated nodes prices	Severity	Lowest		
Descr	Description				
Node KYC page contains outdated prices					
(https://tech.ambrosus.com/apply/). For example, Hermes node					
setup is free of charge, however, application page says that					
node holder should pay 150k AMB for it					
Impact					

1

It misleads AMB masternode holders and potentially increase their spending.

How to mitigate

Update KYC page

Corresponding task in security review

2

11	Token access functionality should be removed from the repository	Severity	Lowest
Descr	iption		
As far as, token functionality is already developed, node			
holders can allow token access for better usability. Token is			
stored in HTTP header and can be stolen via different attacks			
Impact			
Node holders can potentially enable insecure token			
authentication functionality			
How to mitigate			
Remove token authentication from the codebase			
Corre	sponding task in security review		14

12	Potential reflected XSS	Severity	Lowest	
Descri	Description			
There is no escaping of special characters on the server.				
http://207.154.249.42/assets/0x826c18a159ff481f5383984e3cca525d				
78e6a40450564e683baa0cf616be24c4'"> <img <="" src="1" td=""/>				
onerror=":alert(1)">				
Impact				
The is	sue doesn't have proven securi	ty impact, how	wever, it is	
recommended to validate GET parameters				
How to	mitigate			

You need to add shielding of characters or connect	t the WAF to		
block all malicious traffic (Allows protection even from			
theoretical attacks)			
Corresponding task in security review	12		

13	Missing Security Headers	Severity	Lowest	
Descr	Description			
This defect is present on all sites https://*.ambrosus.com				
HTTP	HTTP Strict Transport Security is an excellent feature to			
support on your site and strengthens your implementation of				
TLS by getting the User Agent to enforce the use of HTTPS.				
Recommended value "Strict-Transport-Security:				
<pre>max-age=31536000; includeSubDomains".</pre>				
Canta	nt Committe Dolline in an offentive			

Content Security Policy is an effective measure to protect your site from XSS attacks. By whitelisting sources of approved content, you can prevent the browser from loading malicious assets.

X-Frame-Options tells the browser whether you want to allow your site to be framed or not. By preventing a browser from framing your site you can defend against attacks like clickjacking. Recommended value "X-Frame-Options: SAMEORIGIN".

X-XSS-Protection sets the configuration for the cross-site scripting filter built into most browsers. Recommended value "X-XSS-Protection: 1; mode=block".

X-Content-Type-Options stops a browser from trying to MIME-sniff the content type and forces it to stick with the declared content-type. The only valid value for this header is "X-Content-Type-Options: nosniff".

Referrer Policy is a new header that allows a site to control how much information the browser includes with navigations away from a document and should be set by all sites.

Feature Policy is a new header that allows a site to control which features and APIs can be used in the browser.

Impact

The absence of these headers makes the server less secure and it cannot block attacks like XSS or Clickjacking.

How to mitigate

Add additional security headers to all servers that are listed above

Corresponding task in security review

20

14	Account bruteforce / Username enumeration / Email spamming	Severity	Lowest
Description			
Due to the lack of a captcha or other protection mechanism on			
the site https://dashboard.hermes.ambrosus-test.com/, a hacker			
can execute requests without restrictions and blocking.			
POST request to			
https://hermes.ambrosus-test.com/extended/account/secret			

allows you to hack (brute force) an account and determine whether a user is registered or not

POST request to

https://hermes.ambrosus-test.com/extended/organization/request allows you to register new accounts on any mail (allows you to blacklist your email server) and determine whether a user is registered or not

Impact

Attacker might brute force access to the accounts; might block the mail server

How to mitigate

Add a captcha or other protection mechanism (WAF or one-time token).

We recommend connecting hidden Google Captcha (https://www.google.com/recaptcha/intro/v3.html) to all functional queries or connect CloudFlare for all subdomains and set the rate limit for the necessary pages.

Corresponding task in security review

20

15	No integrity checks for deployed nodes	Severity	Lowest
Description			
There are no integrity checks mechanism within the system.			
Node holders might change the codebase before deployment.			
Security mechanisms that are preventing from this is KYC and			
crucial verifications on smart contract layer.			
Impact			

It is known and desired behavior of the system, however, it makes much bigger attack surface for the attacker How to mitigate Consider disallowing node code changes before the node

deployment

Corresponding task in security review

16	Usage of non-latest versions of	Soverity	Lowest
	libraries	Severity	Lowest
Descr	iption		
The v	The version of web3 used in the system is 1.0.0-beta.34,		
however, the latest is 1.0.0-beta.38 as for now; the version			
of ajv used in the system 6.5.5, however, the latest is 6.7.0			
as for now			
Impact			
Issues doesn't have security impact, represents best practice			
recommendation			
How to mitigate			
Update the libraries listed above			
Corresponding task in security review 18			18

7

Document is prepared by Hacken OU hub.hacken.io

Conclusion

Node code was manually reviewed and analyzed with static analysis tools.

NOP scripts were manually reviewed, and risk assessment was performed for it.

The system's network was tested via fuzzing and DDoS.

All web endpoints were tested against typical web vulnerabilities.

This document describes methodology, and all performed actions in Ambrosus Node and NOP Security Review section.

Security review report contains all found security vulnerabilities and other issues in the reviewed code.

Overall quality of reviewed code is high; however, the security state is moderate containing 3 high and 4 medium severity vulnerabilities.

hub.hacken.io

Disclaimers

Hacken Disclaimer

The smart codebase given for review have been analyzed in accordance with the best industry practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in the source code, the details of which are disclosed in this report, web part vulnerabilities, deployment and functionality (performing the intended functions).

The review makes no statements or warranties on security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the code, bugfree status or any other statements of the system. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only - we recommend proceeding with several independent audits and a public bug bounty program to ensure security of the system.

hub.hacken.io