
NODE SECURITY REVIEW
REPORT

Customer: Ambrosus
Date: February 4, 2019
Platform: Ethereum
Language: Javascript

2

This document may contain confidential information about IT
systems and intellectual property of the customer as well as
information about potential vulnerabilities and methods of their
exploitation.
The report containing confidential information can be used
internally by the customer or it can be disclosed publicly after
all vulnerabilities fixed - upon decision of customer.

Document

Name Node Security Review for Ambrosus

Platform Ethereum / Javascript

Date 04.02.2019

Node Link https://github.com/ambrosus/ambrosus-node

Node Commit 9c36109464a481e8e42de673a75590b059595553

Node Branch master

NOP Link https://github.com/ambrosus/ambrosus-nop

NOP Commit 79e20f5d3948f7b397e81f148a1aae04c472a25b

NOP Branch master

Team Composition

Blockchain Security Lead Pavlo Radchuk – PR

Offensive Services lead Eduard Babych - EB

Application Security Engineer Vadym Shovkun – VS

Application Security Engineer Danil Matveev - DM

Blockchain Security Engineer Serhii Okhrimenko – SO

Blockchain Security Engineer Evgenii Marchenko - EM

3

Table of contents

Document..2

Team Composition..2

Table of contents...3

Introduction..4

Scope...4

Executive Summary...5

The distribution of Findings..7

Severity Definitions..7

Ambrosus Node and NOP Security Review.....................................8

Security Review Findings...27

Conclusion...38

Disclaimers..39

4

Introduction

Hacken OÜ (Consultant) was contracted by Ambrosus (Customer) to

conduct a Node Security Review. This report presents the

findings of the security review of Customer`s codebase conducted

between January 25th, 2019 – February 4th, 2019.

Scope

The scope of the project is node codebase and NOP scripts of

Ambrosus project.

The scope of tasks performed during the project is listed below:

1. Finalize Scope

2. Setup nodes

3. Review of cryptoeconomics specification against potential

threats

4. Understanding the system by using its functionality

5. Permission checks against matrix

6. Calculate collision probability - analyze to write a report

7. Auto scanning of the codebase

8. Analyze node upgradeability mechanism

9. Review NOP script and analyze potential threats

10. Dump and analyze traffic between nodes

11. Privilege escalation

12. Docker escape testing

5

13. Fuzzing of APIs (all parameters in GET, POST, PUT requests)

14. NoSQL injection testing

15. Testing and code review of token generation

16. Manual review of timeout mechanism

17. Manual review of auto scanner findings

18. Analysis of KYC process

19. Manual code review for immutability of data (Merkle proofs

etc.)

20. Analyze potential deserialization vulnerabilities

21. Web pentest for Hermes client side

22. Network discovery + scanning of the nodes

23. DDoS simulation

24. Analyze private key storage and usage

25. Analysis of cryptography implementation

26. Report development

Executive Summary

Hacken team performed security review for the Customer system.

The project focus was on 2 factors – web/network penetration

testing for the deployed nodes and blockchain security

assessment for node codebase and NOP script.

The scope of the work was agreed with Customer at the start of

the project and the review was conducted covering the scope. The

6

scope includes attacks on all endpoints that are simulated for 4

main classes of potential attackers:

● external attacker

● external attacker with access to API

● attacker that hosts Hermes node

● attacker that hosts Atlas/Apollo node

Hacken security consultants imitated the hacker activities to

test the overall security state of the system.

The security review identified 3 high, 4 medium, 2 low and 7

lowest/best practice issues.

Most of medium and high-level vulnerabilities were already known

by the Customer and for the moment work as expected.

According to the review auditors evaluate the security state of

the system as moderate.

7

The distribution of Findings

Severity Definitions

Risk Level Description

High

High-level vulnerabilities are easy in exploitation and
may provide an attacker with full control of the
affected systems, also may lead to significant data
loss or downtime. There are exploits or PoC available
in public access.

Medium

Medium-level vulnerabilities are much harder to exploit
and may not provide the same access to affected
systems. No exploits or PoCs available in public
access. Exploitation provides only very limited access.

Low

Low-level vulnerabilities provide an attacker with
information that may assist them in conducting
subsequent attacks against target information
systems or against other information systems, which
belong to an organization. Exploitation is extremely
difficult, or impact is minimal.

Lowest / Code
Style / Best

Practice

These vulnerabilities are informational and can be
ignored.

8

Ambrosus Node and NOP Security Review

This section describes all performed actions against the target

system. We outline task name, responsible, steps performed and

findings with comments for each task.

0 Finalize Scope Responsible PR

Goal
Do decomposition of project, create detailed task list

for the security review

Steps Performed

Consultant team had kick-off meeting with Customer engineers.

Security engineers analyzed the potential threats for the

system and formed a scope of the work

Findings and Comments

During the kick-off meeting auditors understood the main

architectural concepts of the system - there are 4 main

potential attacker classes: external attacker, external

attacker with access to API, attacker that hosts Hermes node

and attacker that hosts Atlas/Apollo node. Security engineers

also obtained all necessary information to proceed with other

tasks.

1 Setup nodes Responsible SO

Goal
Setup 3 types of nodes (Apollo, Hermes and Atlas) for

future testing

Steps Performed

9

SO launched instances for each type of nodes; installed nodes

with their dependencies; sent request to approve nodes'

addresses.

Findings and Comments

Apollo, Atlas and Hermes nodes were deployed on Digital Ocean

servers via NOP scripts. Parity client didn't sync with

Ethereum network by default on each node. We needed to set

"warp" parameter to true in parity_config.toml in order to

start the nodes.

2

Review of cryptoeconomics

specification against potential

threats

Responsible PR/EM

Goal Find high-level issues related to system architecture

Steps Performed

Consultants read the specification; analyzed what potential

threats could be applied to the system; find obvious

architecture issues

Findings and Comments

Cryptoeconomics specification is the document that describes

system architecture. One of the main architectural concepts of

the system is that main logic and verifications are handed down

to smart contracts. Overall architecture security state is

good, consultants found only 1 medium issue related to the

specification.

10

3
Understanding the system by using

its functionality
Responsible Team

Goal
Gain deeper understanding of a system by security

consultants

Steps Performed

Consultants followed the documentation and manually called

different API functions of the node. Monitored the systems

behavior via explorer, logs and proxies

Findings and Comments

No issues were discovered during manual test of the system. All

the functions that were called by auditors worked as expected

4 Permission checks against matrix Responsible EM

Goal
Confirm that permissions within the system are correctly

implemented

Steps Performed

Auditors requested permission matrix and manually compared

implementation logic against available documentation

Findings and Comments

Permissions are correctly implemented - all actions that

require verification limit access as expected. Code

implementation fully follows permissions matrix.

5
Calculate collision probability -

analyze to write a report
Responsible PR

11

Goal
Verify that the collision can't have significant impact

on system

Steps Performed

Calculate the probability of collision for 1 billion of

different entries. Analyze the impact of random id collision

Findings and Comments

IDs in the systems are hashes of the serialized json. We

calculated the probability of collision for a billion of

entries and it was less than 10^-10 %. We were informed by the

customer that in case of collision for the assets and events

Hermes node will just refuse to create second event/asset with

identical id; in case of bundles, it just won't be uploaded to

the network. It means that collision can't have serious impact

on the system

6 Autoscanning of the codebase Responsible EM

Goal
Check against typical security issues patterns with

multiple security analysis tools

Steps Performed

Consultants launched and completed static code analysis using

X, Y, Z, T applications security scanners. Auditors also run

software composition analysis tools - npm audit and snyk

Findings and Comments

The outcome of static security scanners execution was: scanner

X found 3 medium and 10 low issues; scanner Y found 1 critical

and 2 medium issues; scanner Z found 7 medium issues; scanner T

haven't found any issues; npm audit found 1 medium and 1 low

12

issues; snyk found 1 high issue. These findings were manually

reviewed during the task 16 of the project

7
Analyze node upgradeability

mechanism
Responsible PR

Goal
Ensure that all nodes can securely update after important

bugfixes

Steps Performed

Security engineers requested information about node

upgradeability process. After that auditors analyzed the

potential security issues of the process

Findings and Comments

"Each node owner is responsible for updating the nodes. When

Customer releases the security update, it notifies node holders

via emails gathered from KYC. After receiving notification node

owner should manually update the node - login to node and run

update.sh. Customer can check the current version of the node

via node_info request. However, Customer don't have any

integrity checks and the value can be abused.

Docker don't setup latest containers so it won't update Parity

or other in case of updates."

8
Review NOP script and analyze

potential threats
Responsible SO

Goal
Verify that NOP algorithm of generating config files are

correct and the node is secure by default

13

Steps Performed

Consultants manually reviewed the source code of NOP; analyzed

potential threats during setup process

Findings and Comments

NOP defines the default node configuration after set up. No

potential attack vectors were discovered during review.

However, there are no SSL advisory in NOP, default node will

establish only HTTP connections without encryption.

9
Dump and analyze traffic between

nodes
Responsible EB

Goal

Record and analyze traffic on three nodes (Apollo,

Hermes, Atlas). It was necessary to understand the logic

of each node and discovery the IP-addresses of other

nodes. In the future, this information will be used for

"DDoS" testing and "Network discovery + scanning of the

nodes" testing

Steps Performed

Record traffic through “tcpdump”:

Analyze traffic through “Wireshark and NetworkMiner”

Nodes:

● Apollo - 139.59.208.7

● Hermes - 207.154.249.42

● Atlas - 46.101.137.241

Findings and Comments

14

Since all addresses of the nodes are known from the traffic

analysis, the hacker can conduct a targeted attack on each of

the nodes separately. We recommend in the description on the

launch of the node to make basic recommendations

* Move nginx to another docker container

* Make a white list for connection via ssh and set up a

connection only by keys

* Use only large(AWS, DO, etc) cloud providers.

10 Privilege escalation Responsible EB

Goal

Obtain high-level privileges (e.g. root privileges) and

make their way to critical systems without being noticed

(docker, nginx, source code, private key).

Steps Performed

When testing, we used several users with low privileges on the

source system (docker, ubuntu, test).

Source system:

● AWS machine image 'ambrosus-nop'

● DO pre-installed ubuntu 18.4

List of tests:

Testing exploiting Kernel and Operating System

Testing exploiting Applications and Services

Testing exploiting Services which are running as root

Testing exploiting SGID/SUID misconfiguration

Testing exploiting sudo rights/user

Testing exploiting badly configured cron jobs

15

Testing exploiting Shell Escape

Testing exploiting Symlinks

Testing exploiting Buffer Overflow

Testing exploiting Weak/reused/plaintext passwords

Testing exploiting Bad path configuration

Findings and Comments

The tests did not show the presence of vulnerabilities, but we

recommend setting up auto-update for all used services (kernel,

ssh, nginx, docker, etc.)

11 Docker escape testing Responsible EB

Goal

Our goal was to escape from the container using the

kernel or vulnerabilities in the docker itself to gain

access to the node.

Steps Performed

● Testing all CVEs for docker

(https://www.cvedetails.com/product/28125/Docker-Docker.ht

m)

● Testing Kernel vulnerabilities

● Testing misconfiguration

Findings and Comments

Docker container escaped will generally use Docker Daemon file

parsing vulnerabilities, system kernel privilege escalation

vulnerabilities and other means, to achieve the purpose of

elevating user rights and break the original isolation

mechanism restrictions. According to its use of vulnerability

points can be summarized as the use of Docker Daemon file

16

parsing vulnerabilities to achieve the escape; the use of

Docker container environment misconfigurations to achieve

escape; use of kernel vulnerabilities to achieve escape three

cases. Docker Daemon needs to compile the Dockerfile file,

parsing image files, if the external input without filtering,

when triggered to Docker Daemon loopholes, may cause container

escaped. In the early version of the docker, compiling the

deformed Dockerfile files and Improper parsing specially

constructed soft link file in the images would cause arbitrary

code execution, they all belong to this kind of escape problem.

Kleindienst described in the article when mounted the /var/run/

directory to the container will lead to container escape, and

if the CAP_DAC_READ_SEARCH privilege is given to the container

by default can cause an arbitrary file access attack, they all

belong to misconfiguration escape problem. Because the Docker

container and the host share the same kernel, privilege

escalation vulnerabilities in the Linux kernel and driver can

be used to achieve container escape. Jian, Z in their paper

point out that can though be switching namespaces or through

modifying shared memory achieve container escape.

During testing was not found possible to escape from the

container, but if you do not carry out regular updates of the

docker and the image of the AWS 'ambrosus-nop' machine, this

feature may appear

12
Fuzzing of APIs (all parameters

in GET, POST, PUT requests)
Responsible VS/DM

17

Goal
Find errors in the API. Bypass application logic.

Accessing hidden data. Cause the node to stop working

Steps Performed

● Circumvent authentication and authorization mechanisms
● Escalate user privileges
● Hijack accounts belonging to other users
● Violate access controls placed by the administrator
● Alter data or data presentation
● Corrupt application and data integrity, functionality

and performance
● Circumvent application business logic
● Circumvent application session management
● Break or analyze use of cryptography within user

accessible components
● Sending requests with raw data
● Sending requests in the wrong format

Findings and Comments

During testing, no vulnerabilities were found in the API. There

is one potential flaw that you can find in"Security Review

Findings"

Method REFERENCE NoSQL injection Fuzzing

POST Create token Protected Protected

POST Add account Protected Protected

GET Find account Protected Protected

GET Get account Protected Protected

PUT Modify account Protected Protected

POST Create an asset Protected Protected

GET Fetch an asset by id Protected Protected

GET Find assets Protected Protected

POST Create an event Protected Protected

18

GET Fetch event Protected Protected

GET Find events Protected Protected

GET Fetch bundle Protected Protected

GET Fetch bundle metadata Protected Protected

GET Get node info Protected Protected

13 NoSQL injection testing Responsible VS/DM

Goal Gaining access to the database through NoSQL injection

Steps Performed

All requests were checked in manual and automatic format for

the presence of NoSQL injection.

Findings and Comments

During testing, no vulnerabilities were found in the API.

Method REFERENCE NoSQL injection Fuzzing

POST Create token Protected Protected

POST Add account Protected Protected

GET Find account Protected Protected

GET Get account Protected Protected

PUT Modify account Protected Protected

POST Create an asset Protected Protected

GET Fetch an asset by id Protected Protected

GET Find assets Protected Protected

POST Create an event Protected Protected

GET Fetch event Protected Protected

19

GET Find events Protected Protected

GET Fetch bundle Protected Protected

GET Fetch bundle metadata Protected Protected

GET Get node info Protected Protected

14
Testing and code review of token

generation
Responsible PR

Goal

Verify that token is generated securely and attacker

can't forge the token. Ensure that token authentication

is secure

Steps Performed

Security engineers analyzed when token is used; manually

reviewed the code responsible to token generation

Findings and Comments

Customer is aware and confirm that token should be used only

for testing purposes and its usage is insecure by design.

Customer don't recommend using the token in the mainnet.

However, it is much more convenient for node holders to use the

token and they can enable token authentication. Overall process

of token generation is secure

15
Manual review of timeout

mechanism
Responsible PR

Goal
Verify that default protection from DDoS and high-load is

effective

20

Steps Performed

Auditors analyzed the mechanisms of timeouts for the node while

receiving requests

Findings and Comments

By default, Nodes don't have any application limits for

requests; NOP don't recommend to implement any kind of DDoS

protection, thus, there is no DDoS and high-load protection for

the nodes. Timeout mechanism is implemented on nginx side on

Customer servers. This mechanism was tested against DDoS during

task 22 of the project.

16
Manual review of autoscanner

findings
Responsible EM

Goal
Discard all false positives from security scanners

findings during stage 6 of the project

Steps Performed

Security consultants manually reviewed the findings of the

autoscanners and tested their applicability

Findings and Comments

Scanners X, Y, Z, T together with npm audit and snyk found 22

different security issues. All of them were manually reviewed

and none of them were valid.

17 Analysis of KYC process Responsible PR

Goal Verify that risk of malicious node set up is low

Steps Performed

21

Consultants obtained all information about the KYC process;

analyzed the security risks of the process

Findings and Comments

"There are 2 different types of KYC processes for the node

holders:

1. For Hermes node holders - the KYC process is light and most

of the people can pass this KYC. It is done because Hermes node

holders spend money in the system and difficult KYC process can

push away potential Customer clients to deploy the node. As far

as it is easy to pass Hermes KYC, Hermes node holder should be

considered as attacker for other checks

2. For Atlas and Apollo node holders - the KYC process is more

difficult. Firstly, KYC applicant should provide the proof of

identity (for example, passport), secondly KYC applicant should

provide proof of residence, lastly, Ambrosus does third-party

background checks against applicant.

Note. KYC process for Atlas node is not currently implemented.

Customer informed us that the process will be similar to Apollo

node KYC

Considering all of the above, the risk of attacker being

Apollo/Atlas node holder is low and Hermes endpoint might be

used attacker for malicious activity"

18

Manual code review for

immutability of data (merkle

proofs etc.)

Responsible EM

22

Goal

Verify the correctness of all tasks related to Ethereum

blockchain. Confirm that the node correctly validates

bundles, events and assets

Steps Performed

Auditors manually reviewed the implementation of bundles,

events and assets validation; compared implementation logic

against available documentation.

Findings and Comments

The node uses web3 package for all interaction with Ethereum

blockchain. The implementation complies with best practices.

The node uses ajv (https://www.npmjs.com/package/ajv) package

to validate received data against JSON schemas. JSON schemas

used in the system comply with documentation. No issues related

to the data immutability were found

19
Analyze potential deserialization

vulnerabilities
Responsible PR

Goal
Verify that serialization and deserialization is done in

secure way

Steps Performed

Auditors analyzed how and what data types are serialized and

deserialized. Manually reviewed the code of the object

serialization, particularly against

https://www.acunetix.com/blog/web-security-zone/deserialization

-vulnerabilities-attacking-deserialization-in-js/

Findings and Comments

23

System mostly uses serialization to store the json in the

database or calculate a hash of the data. JSON.stringify and

JSON.parse are used for json serialization and deserializations

that is considered to be secure. Moreover, all json data is

validated against predefined schema. Serialization for objects

is used only in serializeForHashing function, however the

objects passed to the function are never deserialized. It means

that code injection via deserialization can't be performed.

20
Web pentest for Hermes client

side
Responsible VS/DM

Goal
Search for errors and vulnerabilities in web applications

such as xss, sqli, ssti, csrf, idor etc.

Steps Performed

Client is requesting Consultant assistance in the performance
of grey-box web application security assessment that will
include the following components:

● Architecture security review
● Web applications described in the scope
● Mapping application code against industry best practices

OWASP ASVS (https://goo.gl/NB9NT6)
The stated objectives of this assessment are:

● Circumvent authentication and authorization mechanisms
● Escalate user privileges
● Hijack accounts belonging to other users
● Violate access controls placed by the administrator
● Alter data or data presentation
● Corrupt application and data integrity, functionality

and performance
● Circumvent application business logic
● Circumvent application session management
● Break or analyze use of cryptography within user

accessible components

24

Application will be verified for common vulnerabilities such as
the OWASP Top 10, logical mistake of application work.

Findings and Comments

For all sites, we recommend connecting WAF and DDoS protection

or using a professional/corporate plan in the CloudFlare. You

can look at all found defects in "Security Review Findings"

21
Network discovery + scanning of

the nodes
Responsible EB

Goal

Identify active hosts and services, for up to the total

number of in-scope active IP addresses (Main nodes and

user nodes. We received this list while recording and

analyzing traffic.), and assess a security posture of

those systems. Attempt to exploit identified

vulnerabilities and demonstrate the impact of those

vulnerabilities.

Steps Performed

Getting a list of active nodes and scanning for vulnerabilities

Findings and Comments

During testing, no vulnerabilities were found in the external

network.

22 DDoS simulation Responsible EB

Goal

Check the operation of the cloud provider, check the

system response to DDoS (HTTP, TCP, UDP), find flaws in

the operation of the system and its response to DDoS

25

Steps Performed

Test cases (Common DDoS attack vectors (L3, L4 & L7)):

1. HTTP get flood

2. SYN flood

3. HTTP slowloris

4. ICMP flood

The speed of load testing varies from 100 MB/s to 6-7 GB/s

Findings and Comments

With a DNS flood, the server crashed in a few minutes, but aws

quickly blocked malicious traffic

Host Type 0-1000 MB/s 2-10 GB/s 10-50 GB/s

34.247.98.162
UDP Flood PASS PASS PASS

13.126.51.11
UDP Flood PASS PASS PASS

52.215.227.185
UDP Flood PASS PASS PASS

34.247.98.162
TCP Flood PASS PASS PASS

13.126.51.11
TCP Flood PASS PASS PASS

52.215.227.185
TCP Flood PASS PASS PASS

34.247.98.162
DNS Flood PASS PASS PASS

13.126.51.11 DNS Flood PASS PASS PASS

26

52.215.227.185
DNS Flood PASS PASS PASS

34.247.98.162
30303 Flood PASS PASS PASS

13.126.51.11
30303 Flood PASS PASS PASS

52.215.227.185
30303 Flood PASS PASS PASS

23
Analyze private key storage and

usage
Responsible PR/EM

Goal
Verify that private key is stored securely and attacker

can't get a private key if he gets access to the host

Steps Performed

Consultants searched for the private key on the host; analyzed

where private key is stored or used in the codebase

Findings and Comments

27

Private key is used for all signatures - to sign assets, events

and bundles. This is the only functionality that uses a private

key. Private key is stored in clear text on the node in

docker-compose.yaml and state.json files. During code review

auditors also discovered that private key can be written to the

logs in some conditions.

24
Analysis of cryptography

implementation
Responsible EM

Goal
Verify that all cryptography used is implemented/used

correctly

Steps Performed

Auditors searched for crypto primitives in the codebase and

dependencies

Findings and Comments

The only crypto primitives used within the system are keccak256

for hashing and ECDSA for signing and verifying signatures.

These functions are implemented in web3 library, no custom

cryptography is used within the project. Considering

abovementioned the cryptography implementation is secure.

25 Report development Responsible EB/PR

Goal Prepare final report that will be presented to Customer

Steps Performed

Assemble description of all steps performed by the team and

corresponding findings

28

Findings and Comments

N/A

29

Security Review Findings

The section contains all security and best practice findings

found during security review with their severities, impact and

mitigation recommendations.

1 Private key is logged Severity High

Description

Private key is logged via `logger.info('Secret:

${account.secret}');` during node initialization.

Impact

It might be easier for the attacker to stole private key from

the logs than from the node itself

How to mitigate

Don't log private key anyway. It is recommended not to work

directly with the private key.

Corresponding task in security review 23

2

Private key and passwords for

unlocking accounts are stored as

plain text on the node

Severity High

Description

Private key in docker-compose.yaml and state.json files and

password for unlocking accounts (signer, private account,

validators) are stored as plain text on the node.

Impact

If attacker gets access to the node - he gets access to the

Ethereum private key. He can withdraw all the founds on the

account using it

How to mitigate

30

We recommend using signer middleware for the system. It can be

deployed in separate container and contain a private key that

never leaves the signer. Node can request transactions sign

from the signer to validate bundles. The signer should have

transaction filter that whitelists only necessary

transactions, for example, to sign a bundle. If attacker gets

access to the node, he could only execute whitelisted

transaction and he can’t transfer funds from it. In order to

obtain a private key, he will need to get access to the

signer, where private key is stored. Clef

(https://github.com/ethereum/go-ethereum/tree/master/cmd/clef) is an

example of signer implementation. Clef’s security can be used

for the system.

Corresponding task in security review 23

3
Yoast SEO Authenticated Race

Condition
Severity High

Description

Current Yoast version has a race condition vulnerability which

leads to command execution. The command executions can be

exploited with any SEO Manager role account. The detailed

description of vulnerability can be found here -

https://thattechguy.com.au/yoast-seo-authenticated-race-condit

ion/

Vulnerable endpoint https://tech.ambrosus.com/

Impact

https://github.com/ethereum/go-ethereum/tree/master/cmd/clef

31

Vulnerability allows you to elevate your privileges on the

server and execute commands from a privileged user.

How to mitigate

Consider upgrading Yoast SEO to the latest version

Corresponding task in security review 20

4 Penalty calculation issue Severity Medium

Description

The formula for Penalty calculation is the following.

Thus, the penalty withdrawn exponentially decreases with the

number of punishments.

Since \sum_{i=1}^{\infty}(2/100)^i = 1/49 \approx 0.0204, the

offending node will be fined in total for all times not more

than 3% of the stake

Impact

1) The more the node will be punished, the less motivation

will have the others to challenge it.

32

2) The reward for sheltering is given to the node

continuously. Thus, the node that was punished several times

will still be able to profit even in case of challenges

How to mitigate

Consider reviewing the penalty formula making the penalty

exponentially increasing instead of decreasing

Corresponding task in security review 2

5
MongoDB access control is not

implemented
Severity Medium

Description

Organization with Hermes node might have read access to other

organization bundles. The issues are known and confirmed by

Customer. Customer already works on the fix.

Impact

Attacker who setup malicious Hermes node might have read

access to all bundles within the system

How to mitigate

Implement access control for Hermes nodes for MongoDB - Hermes

node should have access to their local database and don't have

access to all bundles

Corresponding task in security review 3

6
Docker images for parity and

mongo doesn't use latest images
Severity Medium

Description

NOP configures docker-compose.yml with non-latest version of

docker images for parity and mongo (parity/parity:v2.0.8 and

mongo:4.1)

33

Impact

Old versions of the docker images potentially contain unfixed

bugs and vulnerabilities

How to mitigate

Change all versions to latest in the NOP

Corresponding task in security review 8

7
WordPress XML-RPC authentication

brute force
Severity Medium

Description

The XML-RPC API that WordPress provides gives developers a way

to write applications (for Customer) that can do many of the

things that you can do when logged into WordPress via the web

interface. The main weaknesses associated with XML-RPC are:

Brute force attacks: Attackers try to login to WordPress using

xmlrpc.php

Vulnerable endpoint https://tech.ambrosus.com/xmlrpc.php

Impact

A hacker can find the right combination login / password

combination for https://tech.ambrosus.com/ and access the

server

How to mitigate

It is necessary to disable the XML-RPC on

https://tech.ambrosus.com/

Corresponding task in security review 20

8
Synchronization fails with warp

== false
Severity Low

34

Description

NOP generates parity_config.toml with warp == false by

default. It makes synchronization unavailable.

Impact

It is not easy to understand where is problem and potentially

could lead to bigger issues during fixing process.

How to mitigate

Set warp == true for synchronization.

Corresponding task in security review 1

9 No SSL configuration in NOP Severity Low

Description

After NOP configuration nodes accept http by default.

Impact

Default configuration of a masternode makes man-in-the-middle

attack possible.

How to mitigate

Accept only https requests, add https configuration to the NOP

Corresponding task in security review 8

10 Outdated nodes prices Severity Lowest

Description

Node KYC page contains outdated prices

(https://tech.ambrosus.com/apply/). For example, Hermes node

setup is free of charge, however, application page says that

node holder should pay 150k AMB for it

Impact

35

It misleads AMB masternode holders and potentially increase

their spending.

How to mitigate

Update KYC page

Corresponding task in security review 2

11
Token access functionality should

be removed from the repository
Severity Lowest

Description

As far as, token functionality is already developed, node

holders can allow token access for better usability. Token is

stored in HTTP header and can be stolen via different attacks

Impact

Node holders can potentially enable insecure token

authentication functionality

How to mitigate

Remove token authentication from the codebase

Corresponding task in security review 14

12 Potential reflected XSS Severity Lowest

Description

There is no escaping of special characters on the server.

http://207.154.249.42/assets/0x826c18a159ff481f5383984e3cca525d

78e6a40450564e683baa0cf616be24c4'"><img src="1"

onerror=":alert(1)">

Impact

The issue doesn’t have proven security impact, however, it is

recommended to validate GET parameters

How to mitigate

36

You need to add shielding of characters or connect the WAF to

block all malicious traffic (Allows protection even from

theoretical attacks)

Corresponding task in security review 12

13 Missing Security Headers Severity Lowest

Description

This defect is present on all sites https://*.ambrosus.com

HTTP Strict Transport Security is an excellent feature to

support on your site and strengthens your implementation of

TLS by getting the User Agent to enforce the use of HTTPS.

Recommended value "Strict-Transport-Security:

max-age=31536000; includeSubDomains".

Content Security Policy is an effective measure to protect

your site from XSS attacks. By whitelisting sources of

approved content, you can prevent the browser from loading

malicious assets.

X-Frame-Options tells the browser whether you want to allow

your site to be framed or not. By preventing a browser from

framing your site you can defend against attacks like

clickjacking. Recommended value "X-Frame-Options: SAMEORIGIN".

X-XSS-Protection sets the configuration for the cross-site

scripting filter built into most browsers. Recommended value

"X-XSS-Protection: 1; mode=block".

37

X-Content-Type-Options stops a browser from trying to

MIME-sniff the content type and forces it to stick with the

declared content-type. The only valid value for this header is

"X-Content-Type-Options: nosniff".

Referrer Policy is a new header that allows a site to control

how much information the browser includes with navigations

away from a document and should be set by all sites.

Feature Policy is a new header that allows a site to control

which features and APIs can be used in the browser.

Impact

The absence of these headers makes the server less secure and

it cannot block attacks like XSS or Clickjacking.

How to mitigate

Add additional security headers to all servers that are listed

above

Corresponding task in security review 20

14
Account bruteforce / Username

enumeration / Email spamming
Severity Lowest

Description

Due to the lack of a captcha or other protection mechanism on

the site https://dashboard.hermes.ambrosus-test.com/, a hacker

can execute requests without restrictions and blocking.

POST request to

https://hermes.ambrosus-test.com/extended/account/secret

38

allows you to hack (brute force) an account and determine

whether a user is registered or not

POST request to

https://hermes.ambrosus-test.com/extended/organization/request

allows you to register new accounts on any mail (allows you to

blacklist your email server) and determine whether a user is

registered or not

Impact

Attacker might brute force access to the accounts; might block

the mail server

How to mitigate

Add a captcha or other protection mechanism (WAF or one-time

token).

We recommend connecting hidden Google Сaptcha

(https://www.google.com/recaptcha/intro/v3.html) to all

functional queries or connect CloudFlare for all subdomains

and set the rate limit for the necessary pages.

Corresponding task in security review 20

15
No integrity checks for deployed

nodes
Severity Lowest

Description

There are no integrity checks mechanism within the system.

Node holders might change the codebase before deployment.

Security mechanisms that are preventing from this is KYC and

crucial verifications on smart contract layer.

Impact

39

It is known and desired behavior of the system, however, it

makes much bigger attack surface for the attacker

How to mitigate

Consider disallowing node code changes before the node

deployment

Corresponding task in security review 7

16
Usage of non-latest versions of

libraries
Severity Lowest

Description

The version of web3 used in the system is 1.0.0-beta.34,

however, the latest is 1.0.0-beta.38 as for now; the version

of ajv used in the system 6.5.5, however, the latest is 6.7.0

as for now

Impact

Issues doesn't have security impact, represents best practice

recommendation

How to mitigate

Update the libraries listed above

Corresponding task in security review 18

40

Conclusion

Node code was manually reviewed and analyzed with static

analysis tools.

NOP scripts were manually reviewed, and risk assessment was

performed for it.

The system’s network was tested via fuzzing and DDoS.

All web endpoints were tested against typical web

vulnerabilities.

This document describes methodology, and all performed actions

in Ambrosus Node and NOP Security Review section.

Security review report contains all found security

vulnerabilities and other issues in the reviewed code.

Overall quality of reviewed code is high; however, the security

state is moderate containing 3 high and 4 medium severity

vulnerabilities.

41

Disclaimers

Hacken Disclaimer

The smart codebase given for review have been analyzed in

accordance with the best industry practices at the date of this

report, in relation to: cybersecurity vulnerabilities and issues

in the source code, the details of which are disclosed in this

report, web part vulnerabilities, deployment and functionality

(performing the intended functions).

The review makes no statements or warranties on security of the

code. It also cannot be considered as a sufficient assessment

regarding the utility and safety of the code, bugfree status or

any other statements of the system. While we have done our best

in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only -

we recommend proceeding with several independent audits and a

public bug bounty program to ensure security of the system.

