
Blockchain Protocol

Security Analysis Report

Customer: DENT Wireless Limited

Date: 01/03/2024

We express our gratitude to the DENT Wireless Limited team for the collaborative engagement that

enabled the execution of this Security Assessment.

DENTNet represents a revolutionary approach, designed to enhance the management of

telecommunication assets through seamless integration with existing telco systems, leveraging

blockchain technology.

This innovative solution is tailored for use by mobile operators and their ecosystem of partners,

including enterprises, resellers, and service providers.

DENTNet aims to deliver services to users in a manner that is both secure and decentralized, setting

a new standard for transparency and efficiency in the telecommunications industry.

Platform: DENTNet

Language: Rust

Tags: Substrate, Bridge

Timeline: 24/01/2024 - 01/03/2024

Methodology: Blockchain Protocol and Security Analysis Methodology

Review Scope

Repository https://github.com/dentnet/dentnet-node

Commit 24454d3af428f92ebe42341403e0aa551ac6e1d6

2

https://hackenio.cc/blockchain_methodology
https://github.com/dentnet/dentnet-node

Audit Summary

10/10 9/10 10/10 10/10
Security Score Code quality score Architecture quality score Documentation quality score

Total 9.9/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 2 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 1

Vulnerability Status

F-2024-1062 - Missing exchange rate protection parameter Fixed

F-2024-1164 - Sponsorees can't remove their sponsorship relationship Fixed

3

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/7b193ecf-7bf5-4736-9d92-1cf84a0e3338
https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/6f51f7c0-4f9d-4831-8733-44970361ff5e

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Blockchain Protocol Code Review and Security Analysis Report for DENT

Wireless Limited

Audited By Nataliia Balashova

Approved

By
Sofiane Akermoun

Website https://www.dentwireless.com/

Changelog 01/03/2024 - Preliminary Report

ChangeLog 08/03/2024 - Final report

4

https://www.dentwireless.com/

Table of Contents

System Overview 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Architecture Quality 7

Security Score 7

Summary 7

Findings 9

Vulnerability Details 9

F-2024-1062 - Missing Exchange Rate Protection Parameter - Medium 9

F-2024-1164 - Sponsorees Can't Remove Their Sponsorship Relationship - Low 11

Observation Details 13

F-2024-0764 - TODO And FIXME Comments In The Codebase - Info 13

F-2024-0781 - Test Coverage - Info 15

F-2024-0948 - Inaccurate Weight Attribute In Add_vendor - Info 16

F-2024-0952 - Missing Event For Set_allowed_sponsors - Info 17

F-2024-1055 - Linter Warnings - Info 19

F-2024-1151 - Potential Improvements In Documentation - Info 21

F-2024-1177 - Missing Event For Add_vendor Extrinsic - Info 22

Appendix 1. Severity Definitions 23

Appendix 2. Scope 24

Components In Scope 24

System Overview

DENTNet nodes employ the Substrate framework, including multiple pallets and a specifically

configured Runtime. DENTNet nodes utilize the Aura block authoring mechanism and the GRANDPA

finality gadget for consensus.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's blockchain protocol project.

Detailed scoring criteria can be referenced in the corresponding section of the Blockchain Protocol

and Security Analysis Methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

The code adheres to Rust and Substrate documentation standards with complete doc strings.

Code quality

The total Code Quality score is 9 out of 10.

Good usage of the Substrate Framework

Very good code coverage

The project applies Polkadot linter rules for code quality assurance.

Two minor mitigated quality issues will be addressed in upcoming releases.

Architecture quality

The total Architecture Quality score is 10 out of 10.

Based on the Substrate framework, which enhances security and maintainability

Good integration of ChainBridge pallet

Functionalities are well scoped within specific pallets

No tight coupling in pallets design

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 1 low severity issues.

The two security issues were quickly resolved, resulting in a perfect security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's blockchain protocol yields an overall score of 9.9. This

score reflects the combined evaluation of documentation, code quality, architecture quality, and

security aspects of the project.

7

https://hackenio.cc/blockchain_methodology

Findings

Vulnerability Details

F-2024-1062 - Missing exchange rate protection parameter -

Medium

Description: The current implementation lacks a protection parameter for the expected

output amount in the exchange extrinsic of the pallet-exchange. As a

result, there is a potential vulnerability where the set_rate extrinsic can

be called and executed between an exchange call and its execution,

leading to a different amount of output than expected.

The exchange extrinsic allows users to swap tokens for native currency

based on the current exchange rate. However, without a protection

parameter for the expected output amount, the exchange rate can be

modified by a concurrent call to the set_rate extrinsic, occurring

between the initiation and execution of the exchange extrinsic. This can

result in the output amount being different from what the user expected,

introducing a risk of financial discrepancies.

Users may face unexpected and potentially unfavorable output amounts

during token exchanges if the exchange rate is modified by a concurrent

set_rate call. This could lead to financial losses and negatively impact

user trust in the token exchange functionality.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Medium

Impact: 3/5

Likelihood: 3/5

Recommendations

Recommendation: Our recommendation is to introduce a protection parameter in the

exchange extrinsic to specify the expected output amount. The suggested

name for this parameter would be expected_output. This parameter

8

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/7b193ecf-7bf5-4736-9d92-1cf84a0e3338

should be used to validate the output amount against the user's

expectations before finalizing the token exchange.

By incorporating the expected_output parameter, users gain the ability

to predefine the anticipated outcome of the token exchange. This

proactive measure not only enhances the transparency of the process but

also acts as a preventive measure against potential discrepancies

between the expected and actual output amounts.

9

F-2024-1164 - Sponsorees can't remove their sponsorship

relationship - Low

Description: A flaw was identified in the logic for removing a sponsorship

relationship.The current implementation of the remove_sponsor function

in pallet-sponsor restricts the ability to terminate the sponsorship to

the sponsor only, neglecting the scenario where the sponsoree (the

account being sponsored) wishes to sever this relationship.

This oversight is encapsulated in the conditional check within the match

statement:

pallets/sponsor/src/lib:115:

match sponsor {

Some(v) if v == caller || v == account => {

Sponsors::<T>::remove(&account);

Pallet::<T>::dec_sufficients(&account);

Self::deposit_event(Event::SponsorRemoved { sponsor: caller, account

});

Ok(().into())

},

This logic incorrectly uses v == account to determine if the sponsor is

the account attempting to remove the sponsorship, which is a logical

fallacy since v represents the sponsor's account ID, and account is the

sponsoree's account ID.

This misalignment prevents sponsorees from having control over their

sponsorship status, potentially leading to undesirable dependencies and

misuse of the sponsorship mechanism.

Assets:
Runtime & Pallets

Status: Fixed

Classification

Severity: Low

Impact: 2/5

Likelihood: 2/5

Recommendations

Recommendation: To rectify this issue and align the functionality with the intended design

that allows either party (sponsor or sponsoree) to terminate the

sponsorship, the conditional check within the remove_sponsor function

should be updated.

frame_system::

10

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/6f51f7c0-4f9d-4831-8733-44970361ff5e

The corrected condition should verify if the caller is the sponsor or the

sponsoree, granting both parties equal authority to dissolve the

sponsorship.

The revised logic is proposed as follows:

pub fn remove_sponsor(

origin: OriginFor<T>,

account: T::AccountId,

) -> DispatchResultWithPostInfo {

let caller = ensure_signed(origin)?;

let sponsor = Self::sponsor(&account);

match sponsor {

Some(v) if v == caller || caller == account => { // FIXED

Sponsors::<T>::remove(&account);

Pallet::<T>::dec_sufficients(&account);

Self::deposit_event(Event::SponsorRemoved { sponsor: caller, account

});

Ok(().into())

},

_ => Err(Error::<T>::NotSponsor.into()),

}

}

This adjustment ensures that the function checks whether the caller (the

entity executing the transaction) is either the current sponsor of the

account (v == caller) or the sponsoree itself (caller == account),

thus correctly implementing the dual-party termination capability.

frame_system::

11

Observation Details

F-2024-0764 - TODO and FIXME comments in the codebase - Info

Description: The current issue involves the presence of 2 TODO and 5 FIXME comments

distributed throughout the codebase.

Each serves as a signal for areas requiring meticulous attention,

considering potential security implications or specific sections demanding

heightened scrutiny for improvement. Addressing these aspects is

essential for fortifying the software's robustness and security posture.

This set of comments underscores the dynamic and iterative nature

inherent in the ongoing software development process. Identifying and

addressing these flagged aspects are crucial steps in fortifying the

robustness and security posture of the software project.

TODO and FIXME comments to be implemented/considered/removed:

TODO:

pallets/sponsor/src/lib.rs:83 Should this pallet also be marked in

system pallet as a consumer of the sponsoring account?

runtime/src/lib.rs:2040 this is manual for now someday we might be

able to use a macro for this particular key

FIXME:

node/src/service.rs:529 #1578 make this available through chainspec

pallets/vending/Cargo.toml:28 this is a temporary dependency

pallets/vending/src/lib.rs:383 It should be using Preservation::Protect

pallets/vending/src/lib.rs:597 this doesn't work because it uses
namespace CollectionOwner under the hood

pallets/vending/src/lib.rs:624 this doesn't work because it uses

namespace CollectionOwner under the hood

Assets:
Code Quality

Status: Fixed

Recommendations

Recommendation: It is strongly recommended to give thoughtful attention to all TODO and

FIXME comments within your codebase. These annotations extend

beyond simple reminders, often encompassing critical functionalities or

deferred improvements. Overlooking these areas could potentially expose

vulnerabilities in your system, underscoring the importance of addressing

12

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/88cb6f0e-eccd-4656-8ac7-6bc43cd5a906

them promptly to enhance the overall robustness and security of your

software.

13

F-2024-0781 - Test coverage - Info

Description: Currently, the project faces disparities in test coverage across different

pallets.

We've encountered some compilation challenges in the test suites of three

essential pallets: Chainbridge, Dentbridge, and Vending.

Addressing these compilation issues is crucial for ensuring a reliable

testing infrastructure, contributing to the overall robustness and stability

of the identified pallets within our project.

When examining the coverage for other pallets , the following results can

be observed:

Name Coverage

sponsor 0/26 (0%)

executive-collective 234/337 (69,4%)

exchange 0/50 (0%)

Assets:
Code Quality

Status: Fixed

Recommendations

Recommendation: In line with industry best practices, it's advisable to strive for a test

coverage target of at least 80%. This benchmark ensures a

comprehensive assessment of pallet functionality and significantly

reduces the risk of undiscovered issues. Aimed at enhancing the overall

reliability and maintainability of our project, achieving this standard will

reinforce our commitment to delivering high-quality, robust software.

14

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/c67472e5-3c26-47c3-9114-2227ba248aa0

F-2024-0948 - Inaccurate weight attribute in add_vendor - Info

Description: In the provided code for the add_vendor extrinsic from pallet-

vending, an invalid weight attribute has been included within the pallet

call. This weight attribute is declared as follows:

pallets/vending/src/lib.rs:454

#[pallet::weight(<T as Config>::WeightInfo::update_balance())]

#[pallet::call_index(6)]

pub fn add_vendor(

origin: OriginFor<T>,

vendor: T::AccountId,

) -> DispatchResultWithPostInfo {...}

The inclusion of the weight attribute implies a connection between the

add_vendor extrinsic and the resource consumption associated with the

update_balance logic.

Upon closer examination, it becomes apparent that the add_vendor

extrinsic neither directly invokes the update_balance logic nor

necessitates the associated weight calculation. This inaccuracy in the

weight attribute introduces confusion, may misguide developers, auditors,

or contributors and has the potential to lead to misinterpretation of the

extrinsic's resource consumption.

Assets:
Weights & Benchmarks

Status: Fixed

Recommendations

Recommendation: To enhance code clarity and prevent potential misinterpretations, it is

advisable to remove the redundant weight attribute from the add_vendor

extrinsic.

This adjustment ensures that weight attributes accurately represent the

true resource consumption associated with the specific logic implemented

within the extrinsic.

Furthermore, we suggest including add_vendor in the WeightInfo trait

(pallets/vending/src/weights.rs:36)

Additionally, consider adding an appropriate weight attribute, such as

WeightInfo::add_vendor(), to accurately reflect the resource impact

of the add_vendor extrinsic.

15

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/53f44fbb-240b-4d76-91dd-9bb4e18a78ad

F-2024-0952 - Missing event for set_allowed_sponsors - Info

Description: The extrinsic set_allowed_sponsors from pallet-sponsor plays a

crucial role in managing permissions. Triggered by a root (administrator)

origin, sets the list of permitted sponsors.

pallets/sponsor/src/lib.rs:128

pub fn set_allowed_sponsors(

origin: OriginFor<T>,

allowed_sponsors: BoundedVec<T::AccountId, T::MaxSponsors>,

) -> DispatchResultWithPostInfo {

ensure_root(origin)?;

AllowedSponsors::<T>::put(allowed_sponsors);

Ok(().into())

}

However, a significant oversight is present in the code implementation, as

it lacks the emission of an associated event when modifying the list of

allowed sponsors.

In the provided code implementation, there is no event defined in the

Event enum for tracking changes to the list of allowed sponsors.

pallets/sponsor/src/lib.rs:151

pub enum Event<T: Config> {

/// Sponsor added to account

SponsorAdded { sponsor: T::AccountId, account: T::AccountId },

/// Sponsor removed from account

SponsorRemoved { sponsor: T::AccountId, account: T::AccountId },

}

Events serve as a fundamental tool for transparency and observability on

the blockchain. They enable external systems, users, and other

stakeholders to track and respond to changes in the system's state. In this

specific scenario, the absence of an event emission means that there is

no clear and public record of modifications to the list of allowed sponsors.

Assets:
Runtime & Pallets

Status: Fixed

Recommendations

Recommendation: To address this, it is recommended to introduce an event in the pallet-

sponsor module's Event enum (pallets/sponsor/src/lib.rs:151). The
suggested name for this event is AllowedSponsorsSet. This name

conveys the essence of the event, signifying the establishment or

modification of the list of allowed sponsors. Such a naming convention

16

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/667255ad-4311-41c9-86e9-fe967c0fab5b

aligns with best practices and ensures a coherent and understandable

representation of the event's purpose in the broader context of the

blockchain system.

The emitted event acts as a crucial mechanism for communicating and

recording the alteration of the allowed_sponsors list. By encapsulating

pertinent information about the modification, such as the updated list

itself or any other relevant details, the event establishes a comprehensive

record of the change.

17

F-2024-1055 - Linter Warnings - Info

Description: In the course of the static analysis performed using cargo clippy, a

significant number of warnings have been generated. The warnings, listed

below, serve as valuable signals, point towards potential concerns within

the codebase, ranging from maintainability and performance to security. It

is important to address all these warnings to establish a high-quality and

maintainable codebase.

needless_borrow

type_complexity

useless_conversion

inconsistent_digit_grouping

identity_op

match_like_matches_macro

collapsible_match

excessive_precision

new_without_default

needless_return

boxed_local

field_reassign_with_default

partialeq_to_none

manual_retain

unnecessary_cast

match_result_ok

large_enum_variant

needless_borrows_for_generic_args

It's noteworthy that cargo clippy is configured to predominantly issue

warnings based on the default set of lints. Nevertheless, there might exist

additional concerns that can be brought up by enabling and meticulously

examining supplementary lints. These potential issues will be addressed

systematically in separate, forthcoming issues.

Assets:
Code Quality

Status: Fixed

Recommendations

Recommendation: Ensuring a codebase that is both high-quality and maintainable

necessitates the resolution of all warnings issued by cargo clippy.

Tending to these linter warnings not only improves the overall code quality

but also facilitates easier maintenance, troubleshooting, the potential

enhancement of performance and security aspects within your project.

18

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/6171c16f-3492-405f-bdec-0e28b5d1710f
https://rust-lang.github.io/rust-clippy/master/index.html#/needless_borrow
https://rust-lang.github.io/rust-clippy/master/index.html#/type_complexity
https://rust-lang.github.io/rust-clippy/master/index.html#/useless_conversion
https://rust-lang.github.io/rust-clippy/master/index.html#/inconsistent_digit_grouping
https://rust-lang.github.io/rust-clippy/master/index.html#/identity_op
https://rust-lang.github.io/rust-clippy/master/index.html#/match_like_matches_macro
https://rust-lang.github.io/rust-clippy/master/index.html#/collapsible_match
https://rust-lang.github.io/rust-clippy/master/index.html#/excessive_precision
https://rust-lang.github.io/rust-clippy/master/index.html#/new_without_default
https://rust-lang.github.io/rust-clippy/master/index.html#/needless_return
https://rust-lang.github.io/rust-clippy/master/index.html#/boxed_local
https://rust-lang.github.io/rust-clippy/master/index.html#/field_reassign_with_default
https://rust-lang.github.io/rust-clippy/master/index.html#/partialeq_to_none
https://rust-lang.github.io/rust-clippy/master/index.html#/manual_retain
https://rust-lang.github.io/rust-clippy/master/index.html#/unnecessary_cast
https://rust-lang.github.io/rust-clippy/master/index.html#/match_result_ok
https://rust-lang.github.io/rust-clippy/master/index.html#/large_enum_variant
https://rust-lang.github.io/rust-clippy/master/index.html#/needless_borrows_for_generic_args

To address these warnings effectively, we recommend the following steps:

 Prioritize and Plan:

Evaluate the impact of each warning on the codebase and prioritize

resolution based on severity and significance.

 Review and Refactor:

Conduct a thorough review of the code sections associated with each

warning and implement necessary refactoring, such as eliminating

needless borrows, simplifying type complexity, and removing

redundant conversions.

 Testing:

Rigorously test the modified code to ensure that the changes do not

introduce new issues and that the overall functionality remains intact.

 Documentation:

Update relevant documentation to accurately reflect any

modifications made to the codebase.

 Continuous Monitoring:

Establish a routine for regular static analysis using cargo clippy and

promptly address any new warnings that arise to sustain optimal code

quality.

Taking proactive measures to resolve linter warnings not only results in an

enhancement of the overall code quality but also creates a culture of

continuous improvement and adherence to Rust's best practices.

19

F-2024-1151 - Potential Improvements in Documentation - Info

Description: Upon careful examination, the comments and documentation

accompanying the project stand out for their clarity and organization. The

structured approach lays a solid foundation for navigating and

understanding the codebase effectively.

Nonetheless, there is an opportunity for improvement by incorporating

more detailed explanations. Specifically, the addition of crate-level

documentation and commentary on storage values would be beneficial.

Assets:
Documentation

Status: Fixed

Recommendations

Recommendation: To maximize the effectiveness of the cargo doc tool, it is advisable to

expand the documentation to encompass crate-level descriptions and

detailed explanations of certain storage values. This enhancement will

ensure a more thorough and user-friendly resource for developers, filling

in crucial gaps in documentation coverage.

20

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/b1088be6-d71a-41ee-beed-c29430e04c67

F-2024-1177 - Missing event for add_vendor extrinsic - Info

Description: The extrinsic add_vendor in pallet-vending doesn't emit an event

after storage modification.

Assets:
Runtime & Pallets

Status: Fixed

Recommendations

Recommendation: To address this, it is recommended to add an event in the pallet-

vending module's Event enum for vendor additions and to emit this

event after storage modification in add_vendor extrinsic.

21

https://portal.hacken.io/App/Projects/Details/932543d4-5e4b-456b-81fd-d1d9f9bef042/Finding/f31a0714-63b5-4a6a-bada-1a6976c4511b

Appendix 1. Severity Definitions

Severity Description

Critical

Vulnerabilities that can lead to a complete breakdown of the blockchain network's

security, privacy, integrity, or availability fall under this category. They can disrupt the

consensus mechanism, enabling a malicious entity to take control of the majority of

nodes or facilitate 51% attacks. In addition, issues that could lead to widespread crashing

of nodes, leading to a complete breakdown or significant halt of the network, are also

considered critical along with issues that can lead to a massive theft of assets. Immediate

attention and mitigation are required.

High

High severity vulnerabilities are those that do not immediately risk the complete security

or integrity of the network but can cause substantial harm. These are issues that could

cause the crashing of several nodes, leading to temporary disruption of the network, or

could manipulate the consensus mechanism to a certain extent, but not enough to

execute a 51% attack. Partial breaches of privacy, unauthorized but limited access to

sensitive information, and affecting the reliable execution of smart contracts also fall

under this category.

Medium

Medium severity vulnerabilities could negatively affect the blockchain protocol but are

usually not capable of causing catastrophic damage. These could include vulnerabilities

that allow minor breaches of user privacy, can slow down transaction processing, or can

lead to relatively small financial losses. It may be possible to exploit these vulnerabilities

under specific circumstances, or they may require a high level of access to exploit

effectively.

Low

Low severity vulnerabilities are minor flaws in the blockchain protocol that might not have

a direct impact on security but could cause minor inefficiencies in transaction processing

or slight delays in block propagation. They might include vulnerabilities that allow

attackers to cause nuisance-level disruptions or are only exploitable under extremely rare

and specific conditions. These vulnerabilities should be corrected but do not represent an

immediate threat to the system.

22

Appendix 2. Scope

The scope of the project includes the following components from the provided repository:

Scope Details

Repository https://github.com/dentnet/dentnet-node

Commit 24454d3af428f92ebe42341403e0aa551ac6e1d6

Whitepaper DENT Whitepaper

Components in Scope

Cryptography and Keys

Cryptography Libraries

Keys Generation

Keystore storage

Asymmetric Signing and Verification)

XCM

XCM Implementation

Protocol-level vulnerabilities

Interoperability vulnerabilities

Integration vulnerabilities

Runtime & Pallets

Runtime implementation review

Pallets review

Attack scenarios analysis Weight, race,stack,DoS, state implosion, access control bypass...)

RPC

RPC implementation review

Attack scenarios analysis (defaults,DoS, overflows, ..)

Substrate client configuration review

Genesis review

Consensus

Substrate FRAME pallets usage review

Standard attacks review (replay, malleability,...)

Substrate fork review

Review of all code changes and missing updates since Substrate clone date

Weights & Benchmarks

Weight values & benchmarks review

23

https://github.com/dentnet/dentnet-node
https://assets-global.website-files.com/644a78b7f4eb1d564df391b7/64561e277006e18464610d83_DENT_ICO_Whitepaper.pdf

Node Tests

Environment Setup

E2E sync tests

Consensus tests

E2E transaction tests

24

