
Smart Contract Code

Review And Security

Analysis Report

Customer: Ledgity

Date: 18/03/2024



We express our gratitude to the Ledgity team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Ledgity Yield - is a stablecoin yield protocol backed by real-world assets (RWA). It aims to provide a

stable and institutional-grade treasury management solution for stablecoins holders, and bridges the

gap between DeFi and TradFi by offering real yield based on real assets.

Platform: EVM (Linea and Arbitrum)

Language: Solidity

Tags: Token Yield Farming

Timeline: 26/02/2024 - 18/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/LedgityLabs/LedgityYield

Commit 74ba73f9a81012e4a6040810b8f5413f7e2591e1

2

https://hackenio.cc/sc_methodology
https://github.com/LedgityLabs/LedgityYield


Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 1

Vulnerability Status

F-2024-1188 - Unrestricted Fees Fixed

3

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/5e0d4647-6096-42d0-92a8-aea55baa107f


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Ledgity

Audited By Maksym Fedorenko, Roman Tiutiun

Approved By Grzegorz Trawinski

Website https://ledgity.finance/

Changelog 04/03/2024 - Preliminary Report, 18/03/2024 - Second Report

4

https://ledgity.finance/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 11

Disclaimers 16

Appendix 1. Severity Definitions 17

Appendix 2. Scope 18



System Overview

Ledgity Yield is a protocol that aims to provide stablecoins holders with a stable and scalable on-

chain treasury management solution, backed by Real World Assets (RWA) with the following

contracts:

LToken.sol  — is the main contract of the Ledgity Yield protocol as it powers every. It acts as a

bridge between DeFi and TradFi worlds by allowing wallets to deposit stablecoins and Ledgity

team to manage those stablecoins straightforwardly and securely.

InvestUpgradeable.sol  — is the derived contracts that are provided with utilities to manage an

invested token, users' investment periods, rewards calculations, virtual balances, and auto-

compounding.

APRHistory.sol — is the managing the history of Annual Percentage Rates (APRs) on-chain. It

uses a space-efficient storage pattern to minimize gas costs.

ERC20BaseUpgradeable.sol — is an extension of BaseUpgradeable intended to be used as a

base for ERC20 token contracts.

BaseUpgradeable.sol — is an abstract contract that acts as a base for numerous contracts in this

codebase, minimizing code repetition and enhancing readability and maintainability.

SUD.sol — serves as an intermediary number format for calculations within this codebase. It

ensures consistency and reduces precision losses. This library facilitates conversions between

various number formats and the SUD format.

GlobalPause.sol — is a contract that holds a global pause state for the entire Ledgity Yield

ecosystem. This is very practical, because if a potentially dangerous situation for the protocol is

detected, the whole protocol's ecosystem can be paused by a single on-chain transaction.

GlobalOwnableUpgradeable.sol — is designed for upgradeable contracts to inherit a centralized

ownership model from a specified GlobalOwner contract.

GlobalBlacklist.sol — this contract maintains a global registry of blacklisted wallets. This is

notably used for AML enforcement but also as a general way to recover funds originating from

malicious operations (e.g., other protocol hacks).

GlobalRestrictableUpgradeable.sol — is designed for security and upgradeability, with a focus on

centralized blacklist management for a suite of contracts.

GlobalPausableUpgradeable.sol —  provides a centralized way to pause functionality across

multiple contracts by referencing a shared GlobalPause contract.

RecoverableUpgradeable.sol — is designed for asset recovery, specifically ERC20 tokens, in

upgradeable contracts while ensuring ownership and proper initialization. It's part of a system

that prioritizes security and future extensibility.

LTokenSignaler.sol — Used to inform subgraph from the existence of a new L-Token contract.

Once signaled, an L-Token will start being indexed.

GlobalOwner — this contract holds the addresses of the Ledgity Yield protocol's owner (multisig),

shared by all contracts of the ecosystem.

DummyLDYStaking.sol — the contract acts as a placeholder for the real LDYStaking contract until

this one is deployed.

Privileged roles

 The admin of the LToken.sol contract has several key responsibilities and capabilities:

Update the logic of the system.

6



Pause the transfers and withdrawals.

Change the user staking delegates.

Blacklist users.

Can claim unclaimed fees generated from successful withdrawals.

Can recover ERC20 tokens mistakenly sent to the contract (recoverERC20), except for the

underlying token.

Can add (listenToTransfers) or remove (unlistenToTransfers) contracts that listen to

L-Token transfers.

Can set parameters like withdrawal fees rate (setFeesRate), retention rate

(setRetentionRate), and addresses for the LDYStaking contract (setLDYStaking),

withdrawer wallet (setWithdrawer), and fund wallet (setFund).

The Fund account processes big withdrawal requests and responsible for keeping LToken

contract balance sufficient for the users withdrawals.

The Withdrawer processes the queue of user transactions.

7



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical requirements are provided.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage),

The branch coverage ranges from 94%+ but never reaches 100%, due to false positives caused

by the bugs with the forge coverage utility.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 1 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Contracts might be upgraded after thr deployment, but these changes must be approached with

caution as they can potentially introduce critical vulnerabilities.

Owner might redirect rewards from and to any user.

The system might be paused by the owner any time disallowing deposits and withdrawals.

The LToken contract does not hold the significant part of the user deposited funds, most of the

underlying tokens are controlled by the Admin multisig contract which is called Fund contract.

Such behaviour matches requirements, so the admins (Fund account) is responsible for

transfering the tokens to the main contract to cover withdrawal requests. The behaviour is

explained by the client: the Fund multisig will repatriate on the contract only

the stablecoins that are needed to fulfill withdrawal requests, pay yield,

plus a small reserve to enable instant withdrawal. This is pretty

convenient as it consequently reduces the on-chain attack surface of the

protocol. The smart contract logic is not responsible for keeping smart contract solvent, it

depends on the Admin behaviour.

The fees which are applied during the instant withdrawals limited to 20%.

9



Findings

Vulnerability Details

F-2024-1188 - Unrestricted Fees - Low

Description: The LToken contract currently does not enforce any limitations on the

system withdrawal fees that can be applied, allowing for the possibility of

any fees, including 100% or more. feesRateUD7x3 is not restricted,

function setFeesRate(uint32 feesRateUD7x3_) public onlyOwner {

feesRateUD7x3 = feesRateUD7x3_;

}

This might lead to the denial of service if the value higher than 100% will

be specified or to the users unexpected expenses if the fee is updated

after the users deposit is made.

Assets:
contracts/src/LToken.sol [https://github.com/LedgityLabs/LedgityYield]

Status: Fixed

Classification

Severity: Low

Recommendations

Recommendation: Add the validation to ensure that the fees are lower than the threshold, for

example, 20%.

Remediation (revised commit: 3505bd): Proposed validation was added,

the max withdrawal fee is 20%

10

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/5e0d4647-6096-42d0-92a8-aea55baa107f


Observation Details

F-2024-1160 - Initializer Is Not Disabled In Constructor - Info

Description: According to the OpenZeppelin documentation, upgradeable contracts

should invoke the method _disableInitializers() in their

constructor() to disable implementation contract, preventing them

from being used or altered.

However, that functionality is not implemented in LToken.sol

upgradeable contract.

Assets:
contracts/src/LToken.sol [https://github.com/LedgityLabs/LedgityYield]

Status: Accepted

Recommendations

Recommendation: Follow OpenZeppelin’s documentation regarding

_disableInitializers() in LToken.sol upgradeable contract.

11

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/2fb74551-92a3-4f21-8ff9-fa4274981a4c


F-2024-1182 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.18 in all contracts

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version in all contracts.

Remediation (revised commit: 3505bd): Pragma version was locked to

0.8.18.

12

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/00241db8-d231-4fc2-b567-1c764d98e85d


F-2024-1183 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. 

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.  

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

Function setLDYStaking(), listenToTransfers() and

unlistenToTransfers() in LToken.sol are lack of missing zero

address validation.

Status: Accepted

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

13

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/2ef0bfcc-ef46-4044-b015-997c20392843


F-2024-1187 - Redundant Array For Frozen Request - Info

Description: The contract has the frozenRequests array, which stores the requests

from the blacklisted users. The array is permanently growing, and the data

from the array are not utilised onchain.

This introduces the redundancy and redundant Gas expenses processing

the users withdrawal requests.

Assets:
contracts/src/LToken.sol [https://github.com/LedgityLabs/LedgityYield]

Status: Accepted

Recommendations

Recommendation: If the frozenRequests array is needed for the tracking purpose, it is

recommended to utilize the event emitting instead of occupying

permanent storage.

14

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/54bf9744-9189-4eb1-8689-bb2bb9543537


F-2024-1190 - Missing Events Emitting For Critical Functions - Info

Description: The main LToken contract inherits the GlobalBlacklist contract

responsible for blacklisting functionality. Adding or removing the users

from the blacklist with the blacklist, unBlacklist functions

introduces significant state changes which should be properly tracked

offchain for the user experience convenience.

Assets:
contracts/src/GlobalPause.sol

[https://github.com/LedgityLabs/LedgityYield]

Status: Fixed

Recommendations

Recommendation: Consider emitting the corresponding events in the critical functions.

Remediation (revised commit: 6fd9d2): Events were added to

unBlacklist() and blacklist() functions.

15

https://portal.hacken.io/App/Projects/Details/6fbab093-9435-41bd-b4c0-0535cb800772/Finding/b7305fb7-a7b4-4ace-8a7a-a0cd23b42bbb


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

16



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

17

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Primary Scope

Details

Repository https://github.com/LedgityLabs/LedgityYield

Commit 74ba73f9a81012e4a6040810b8f5413f7e2591e1

Whitepaper https://docs.ledgity.finance/architecture/core-contracts

Requirements https://docs.ledgity.finance/architecture/core-contracts

Technical

Requirements

SHA3:

5e57e2b7f45bbbce66b771941b3c61af992b98ea61352f885db2c1626fdd1a61

File: ledgity.gitbook.io.zip

Secondary

Scope Details

Repository https://github.com/LedgityLabs/LedgityYield

Commit 6fd9d2123da96147f4919264b4b917e55385b839

Whitepaper https://docs.ledgity.finance/architecture/core-contracts

Requirements https://docs.ledgity.finance/architecture/core-contracts

Technical

Requirements

SHA3:

5e57e2b7f45bbbce66b771941b3c61af992b98ea61352f885db2c1626fdd1a61

File: ledgity.gitbook.io.zip

Contracts in Scope

contracts/src/interfaces/ITransfersListener.sol

contracts/src/libs/APRHistory.sol

contracts/src/libs/SUD.sol

contracts/src/abstracts/InvestUpgradeable.sol

18

https://github.com/LedgityLabs/LedgityYield
https://docs.ledgity.finance/architecture/core-contracts
https://docs.ledgity.finance/architecture/core-contracts
https://github.com/LedgityLabs/LedgityYield
https://docs.ledgity.finance/architecture/core-contracts
https://docs.ledgity.finance/architecture/core-contracts


Contracts in Scope

contracts/src/abstracts/base/ERC20BaseUpgradeable.sol

contracts/src/abstracts/base/BaseUpgradeable.sol

contracts/src/abstracts/GlobalOwnableUpgradeable.sol

contracts/src/abstracts/RecoverableUpgradeable.sol

contracts/src/abstracts/GlobalRestrictableUpgradeable.sol

contracts/src/abstracts/GlobalPausableUpgradeable.sol

contracts/src/GlobalPause.sol

contracts/src/LTokenSignaler.sol

contracts/src/GlobalBlacklist.sol

contracts/src/GlobalOwner.sol

contracts/src/DummyLDYStaking.sol

contracts/src/LToken.sol

19




