
Smart Contract Code

Review And Security

Analysis Report

Customer: Pikamoon

Date: 06/03/2024

We express our gratitude to the Pikamoon team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Pikamoon is a GameFi token with a focus on community.

Platform: EVM

Language: Solidity

Tags: ERC20, Upgradable

Timeline: 04/03/2024 � 06/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/orbit-cosmos/PikaMoon

Commit d1875af2d9c17470ed72eb507aa3dd6af3f2bb5b

Remediation Commit 7f252cca31d4c3ec92dc8f0e26c07a5ab802d907

2

https://hackenio.cc/sc_methodology
https://github.com/orbit-cosmos/PikaMoon

Audit Summary

10/10 10/10 65.91% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 4 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 2

Vulnerability Status

F�2024�1211 � The OWNER_ROLE can burn tokens from users Fixed

F�2024�1243 � Missing validation of tax value in tax setters functions Fixed

F�2024�1272 � Several supposedly constant variables can be modified Fixed

F�2024�1273 � Misuse of the feeMultiply variable Fixed

3

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/1d583750-f727-49ed-af62-10bb0f7574b5
https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/71a1accb-43a9-408b-a1c5-4f976cc725c0
https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/5621a636-54b6-4666-a2a1-e01382d4d056
https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/61de34ea-3f3b-4ea8-8c27-d4a8067b3b93

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Pikamoon

Audited By Niccolò Pozzolini, Kornel Światłowski

Approved By Przemyslaw Swiatowiec

Website https://www.pikamoon.io/

Changelog 05/03/2024 � Preliminary Report; 06/03/2024 Second Review

4

https://www.pikamoon.io/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 15

Disclaimers 21

Appendix 1. Severity Definitions 22

Appendix 2. Scope 23

System Overview

PikaMoon — simple ERC20 token contract that allows minting and burning of tokens.

It has the following attributes:

Name: Pikamoon

Symbol: PIKA

Decimals: 9

Total supply: 50_000_000_000 tokens.

Privileged roles

PikaMoon contract uses a AccessControlUpgradeable library from OpenZeppelin to restrict access to

important functions. There is defined OWNER_ROLE and addresses with this role can:

set Automated MarketMaker pair,

mint new tokens and assign them to a specified address,

burn existing tokens from a specified owner's balance,

change fee multiply,

set ecosystem address,

set marketing address,

update isExcludeFromTax mapping to exclude or include from tax,

toggle on/off tax

set marketing tax,

set eco system tax,

set burn tax

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are complete.

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 65.91% (branch coverage).

Negative cases coverage is missed.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 2 low severity issues.

All issues were fixed in the remediation part of auditing process, leading to a security score of 10 out

of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

PikaMoon contract is upgradeable: the owner can change the logic at any time, possibly affecting

user balances.

The project whitepaper precisely details the PikaMoon tokenomics, but a vesting contract is

lacking from the provided repository and thus cannot be verified.

The Solidity version 0.8.20 employs the recently introduced PUSH0 opcode in the Shanghai EVM.

This opcode might not be universally supported across all blockchain networks and Layer 2

solutions. Thus, as a result, it might be not possible to deploy solution with version 0.8.20 �� on

some blockchains.

8

Findings

Vulnerability Details

F-2024-1211 - The OWNER_ROLE can burn tokens from users -

Medium

Description: Accounts holding the OWNER_ROLE have the capability to burn tokens from

any designated account. Privileged roles should not possess access to

user tokens.

/**

* @dev Function to burn existing tokens from a specified owner's bal

ance.

* @param owner The address from which the tokens are burned.

* @param amount The amount of tokens to be burned.

*/

function burn(address owner, uint amount) external onlyRole(OWNER_RO

LE) {

// Call the internal _burn function from ERC20 to destroy tokens

_burn(owner, amount);

}

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood �1�5�� 3

Impact �1�5�� 5

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.5 �Medium)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is recommended to utilize ERC20BurnableUpgradeable library from

OpenZeppelin. This library includes the burn() and burnFrom()

functions, ensuring that only the owner of ERC20 tokens or an approved

address can burn tokens. By implementing this library, addresses with the

9

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/1d583750-f727-49ed-af62-10bb0f7574b5

OWNER_ROLE will no longer have the capability to burn user tokens and

tokens will be protected.

Remediation: The problematic burn function has been removed.

Remediation Commit: 1a3c943

Evidences

POC

Reproduce:
import { loadFixture } from "@nomicfoundation/hardhat-toolbox/networ

k-helpers";

import { expect } from "chai";

import { ethers, upgrades } from "hardhat";

import { PikaMoon } from "../typechain-types";

const ZeroAddress = ethers.ZeroAddress;

const toWei = (value: number) => ethers.parseEther(value.toString())

;

describe("audit", function () {

async function deployFixture() {

const [owner, acc1, acc2, acc3] = await ethers.getSigners();

const pikamoon = await ethers.getContractFactory("PikaMoon");

const token = await upgrades.deployProxy(pikamoon,

[

"PIKAMoon",

"PIKA",

toWei(50_000_000_000),

owner.address,

owner.address

],

{ initializer: "initialize" }

);

return { token, owner, acc1, acc2, acc3 };

}

describe("burn()", function () {

it("owner can burn tokens from users", async function () {

const { token, owner, acc1 } = await loadFixture(deployFixture);

const amount = ethers.parseEther("100");

await token.connect(owner).mint(acc1.address, amount);

expect(await token.balanceOf(acc1.address)).to.be.equal(amount);

console.log(`Acc1 balance before: ${await token.balanceOf(acc1.addre

ss)}`);

await token.connect(owner).burn(acc1.address, amount);

expect(await token.balanceOf(acc1.address)).to.be.equal(0);

console.log(`Acc1 balance after : ${await token.balanceOf(acc1.addre

ss)}`);

});

});

});

Results:

10

F-2024-1272 - Several supposedly constant variables can be

modi�ed - Medium

Description: The _cap, marketingTax, ecosystemTax, and burnTax variables are

described as known and constant in the project documentation. However,

in the initialize function in PikaMoon.sol, these variables are

dynamically set. Furthermore, the tax variables (marketingTax,

ecosystemTax, burnTax) have setter functions, which contradicts their

description as constant.

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood �1�5�� 5

Impact �1�5�� 5

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.9 �Medium)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: To ensure consistency between the code and the documentation, and to

avoid potential confusion or misuse, these variables should be declared as

constant in the code. This change would align the implementation with the

documented design and expectations.

Remediation: Tax and cap values have been made constant.

Remediation Commit: edc11f1

11

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/5621a636-54b6-4666-a2a1-e01382d4d056

F-2024-1243 - Missing validation of tax value in tax se�ers

functions - Low

Description: The transfer() and transferFrom() functions deduct three types of

taxes - marketing, ecosystem, and burn tax. The percentage value of each

tax is stored in corresponding state variables: marketingTax,

ecosystemTax, and burnTax. These variables are set inside the

initialize() function. However, addresses with OWNER_ROLE can

change each tax value using dedicated setter functions. These setter

functions do not have an upper cap.

The absence of validation within setMarketingTax(),

setEcoSystemTax(), and setBurnTax() functions may lead to a

situation where the sum of taxes equals or is bigger than the transferred

amount, resulting in the transfer recipient receiving 0 tokens or Denial of

Service.

function setMarketingTax(uint16 _marketingTax) external onlyRole(OWN

ER_ROLE) {

marketingTax = _marketingTax; // 1%

}

function setEcoSystemTax(uint16 _ecosystemTax) external onlyRole(OWN

ER_ROLE) {

ecosystemTax = _ecosystemTax; // 1%

}

function setBurnTax(uint16 _burnTax) external onlyRole(OWNER_ROLE) {

burnTax = _burnTax;

}

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 2

Impact �1�5�� 5

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

12

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/71a1accb-43a9-408b-a1c5-4f976cc725c0

Recommendation: It is recommended to introduce an upper cap for new tax value in:

setMarketingTax(), setEcoSystemTax() and setBurnTax().

Additionally, it is recommended to validate that the cumulative sum of all

taxes remains below the feeMultiply value. For example in

setMarketingTax() this can be achieved by adding the following check:

function setMarketingTax(uint16 _marketingTax) external onlyRole(OWN

ER_ROLE) {

require(burnTax + _marketingTax + ecosystemTax < feeMultiply, ERROR_

MSG);

marketingTax = _marketingTax;

}

Remediation: Tax values have been made constant.

Remediation Commit: edc11f1

13

F-2024-1273 - Misuse of the feeMultiply variable - Low

Description: The feeMultiply variable in PikaMoon.sol represents the precision

used when applying percentages, such as transfer fees. As such, it should

not be subject to change, as there is no valid reason for doing so.

The changeFeeMultiply function currently allows for the modification of

feeMultiply. However, if feeMultiply is changed without a

corresponding change in the fees percentages, the contract could enter a

faulty state each time this function is called.

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 3

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: To resolve this issue, feeMultiply should be declared as a constant,

ensuring its value remains consistent and unchangeable throughout the

contract's lifecycle. Consequently, the changeFeeMultiply function,

which serves as a setter for feeMultiply, should be removed from the

contract. This change will prevent potential inconsistencies and faulty

states in the contract.

Remediation: The feeMultiplier setter has been removed.

Remediation Commit: 1a3c943

14

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/61de34ea-3f3b-4ea8-8c27-d4a8067b3b93

Observation Details

F-2024-1203 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.20.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

contracts/interfaces/IPikaMoon.sol [https://github.com/orbit-

cosmos/PikaMoon]

contracts/interfaces/IUniswapV2Router02.sol [https://github.com/orbit-

cosmos/PikaMoon]

contracts/libraries/Errors.sol [https://github.com/orbit-

cosmos/PikaMoon]

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

Remediation: Pragma version has been locked to 0.8.20.

Remediation Commit: 1a3c943

15

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/27308fda-ce17-4ac2-aa68-384cf1d8bd1a
https://github.com/ethereum/solidity/releases

F-2024-1204 - Redundant imports - Info

Description: Following interfaces are imported but never used:

IPikaMoon

IERC20

IUniswapV2Router02

This redundancy in import operations has the potential to result in

unnecessary gas consumption during deployment and could potentially

impact the overall code quality.

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Recommendations

Recommendation: Remove redundant imports, and ensure that the contract is imported only

in the required locations, avoiding unnecessary duplications.

Remediation: Redundant imports have been removed.

Remediation Commit: 1a3c943

16

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/a20a9d52-3244-4b2c-94a6-a5bc019094bd

F-2024-1207 - Public functions that should be external - Info

Description: Functions that are meant to be exclusively invoked from external sources

should be designated as external rather than public. This is essential

to enhance both the gas efficiency and the overall security of the

contract.

external visibility can be added to:

initialize,

setAutomatedMarketMakerPair

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Recommendations

Recommendation: To optimize gas usage and improve code clarity, declare functions that are

not called internally within the contract and are intended for external

access as external rather than public. This ensures that these

functions are only callable externally, reducing unnecessary gas

consumption and potential security risks.

Remediation: The visibility of the mentioned functions has been changed

to external..

Remediation Commit: 1a3c943

17

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/7da31d75-b508-4e94-943e-b04aca936bf8

F-2024-1208 - Missing events emi�ing for critical functions - Info

Description: Events for critical state changes should be emitted for tracking actions

off-chain.

Events are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence

of events in these functions means that external entities, such as user

interfaces or off-chain monitoring systems, cannot effectively track these

important changes.

It was observed that events are missing events in the following functions:

setMarketingTax,

setEcoSystemTax,

setBurnTax,

toggleTax

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Recommendations

Recommendation: Consider events emitting on aforementioned functions.

Remediation: Events have been added to the mentioned functions.

Remediation Commit: 1a3c943

18

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/4e666d89-05f9-42c1-afc7-77ccae87ea36

F-2024-1276 - Redundant nested if structure and unnecessary

assignments in calculateTax function - Info

Description: The calculateTax function in PikaMoon.sol currently uses a nested if

structure to determine the tax amount. This structure is redundant and

negatively impacts the code quality and readability.

Affected code:

/**

* @dev Function to calculate the tax

* @param from address on which tax is applied

* @param to address on which tax is applied

* @param value amount on which tax is calculated

*/

function calculateTax(

address from,

address to,

uint256 value

)

public

view

returns (

uint256 tax,

uint256 burnAmount,

uint256 marketingAmount,

uint256 ecosystemAmount

)

{

// calculate tax

if (isTaxEnabled) {

if (automatedMarketMakerPairs[from]) {

// means buying from known AMM/DEX

tax = 0;

} else {

if (isExcludeFromTax[from] || isExcludeFromTax[to]) {

// means from or to is excluded from fee

tax = 0;

} else {

burnAmount = (value * burnTax) / feeMultiply;

marketingAmount = (value * marketingTax) / feeMultiply;

ecosystemAmount = (value * ecosystemTax) / feeMultiply;

unchecked {

tax = burnAmount + marketingAmount + ecosystemAmount;

}

}

}

}

}

Assets:
contracts/PikaMoon.sol [https://github.com/orbit-cosmos/PikaMoon]

Status: Fixed

Recommendations

Recommendation: The nested if conditions can be replaced by a single if condition that

checks whether tax should be calculated. The condition should be as

follows:

19

https://portal.hacken.io/App/Projects/Details/db85b9f2-f9a5-4113-8fb8-d12341347b14/Finding/4ae62d15-6f6d-4fa8-8c59-dcdd3197dc38

if(isTaxEnabled && !automatedMarketMakerPairs[from] && !isExcludeFro

mTax[from] && !isExcludeFromTax[to])

This condition checks if tax is enabled and if neither the sender nor the

receiver are excluded from tax, and if the sender is not a known

automated market maker pair. If all these conditions are met, the tax is

calculated.

Additionally, the assignments tax = 0 are unnecessary, as 0 is the

default value for uninitialized uint256 variables in Solidity. These

assignments can be removed to simplify the function.

Remediation: The calculateTax function has been improved as

suggested.

Remediation Commit: 1a3c943

20

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

21

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

22

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/orbit-cosmos/PikaMoon

Commit d1875af2d9c17470ed72eb507aa3dd6af3f2bb5b

Whitepaper https://docs.pikamoon.io/

Requirements
https://github.com/orbit-

cosmos/PikaMoon/blob/master/docs/index.md

Technical

Requirements

https://github.com/orbit-

cosmos/PikaMoon/blob/master/docs/index.md

Contracts in Scope

contracts/PikaMoon.sol

contracts/interfaces/IPikaMoon.sol

contracts/interfaces/IUniswapV2Router02.sol

contracts/libraries/Errors.sol

23

https://github.com/orbit-cosmos/PikaMoon
https://docs.pikamoon.io/
https://github.com/orbit-cosmos/PikaMoon/blob/master/docs/index.md
https://github.com/orbit-cosmos/PikaMoon/blob/master/docs/index.md

