
Smart Contract Code

Review And Security

Analysis Report

Customer: Propbase

Date: 06/03/2024

We express our gratitude to the Propbase team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

The PROPS Staking App facilitates the staking of $PROPS, providing users with additional $PROPS as

rewards. Developed using the Move language and Aptos standard libraries, the application operates

on the Aptos blockchain.

Platform: Aptos

Language: Move

Tags: Staking, Incentives

Timeline: 09.02.2024 - 20.02.2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/Propbase-Application/propbase_staking_blockchain

Commit 52f4bf6

2

https://hackenio.cc/sc_methodology
https://github.com/Propbase-Application/propbase_staking_blockchain

Audit Summary

10/10 8/10 96% 7/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.1/10
The system users should acknowledge all the risks summed up in the risks section of the report

5 5 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 4

Vulnerability Status

F-2024-0826 - Early withdrawal penalty bypass by chunking withdrawal amount Fixed

F-2024-0915 - Unnecessary calculations for old stakeholders Fixed

F-2024-0916 - Users with low stake amounts cannot get any rewards due to precision loss Fixed

F-2024-0917 - Rewarding formula inconsistency between the documentation and the code Fixed

F-2024-0934 - Underconfigured state is possible Fixed

3

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/d0d585d1-e51b-4f37-bf7e-1a6ced4c989d
https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/04f5c1ca-082f-4950-b241-7488eaa0d0d8
https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/7210b1f6-b950-4219-a4c5-40dd9328a1ee
https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/50dd428b-7358-441d-b76b-4373fcf3dd17
https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/031fd00d-d60e-4f91-a24e-456d39508f93

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Propbase

Audited By Ataberk Yavuzer, Vladyslav Khomenko

Approved By Przemyslaw Swiatowiec

Website https://www.propbase.app/

Changelog 20.02.2024 - Preliminary Report, 06.03.2024 - Final Report

4

https://www.propbase.app/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 18

Disclaimers 22

Appendix 1. Severity Definitions 23

Appendix 2. Scope 24

System Overview

PROPS is a staking protocol with the following contracts:

propbase_staking.move — a smart contract that rewards users for staking their tokens. Reward

distribution depends on the max pool cap provided by the owner and could not be re-calculated after

staking epoch is started. It was planned that this contract is going to use the $PROPS token (8

decimals) as its main crypto asset. Users can stake their $PROPS token right after the staking epoch

is getting started. They can stake until 1 day before epoch end time to benefit from protocol rewards.

There are multiple feature of this contract. There will be a total reward amount in the protocol. If the

entire reward amount cannot distributed to protocol users, the excessive amount will be stored in the

pool until default expiry time passes which is 2 years by default. After that time, the treasury role of

the protocol can withdraw the excessive rewards. Also, the owner can freeze the contract in case of

emergency by calling the emergency stop functionality. Protocol rewards and stakes can be directly

transferred to protocol users by owner if the protocol goes into the emergency stage.

Privileged roles

Admin:

stops staking operations in case of emergency

updates admin, reward treasurer and treasury addresses

creates or updates a staking pool

transfer stakes and rewards back in case of emergency

Treasury:

withdraws excess rewards

calculates required rewards

receives early withdrawal penalties

Reward treasurer:

adds reward funds to the protocol

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 7 out of 10.

Documentation contains all information about the protocol itself.

Functional requirements are provided.

Technical description are provided.

There is a minor discrepancy between the documentation and code.

Code quality

The total Code Quality score is 8 out of 10.

Event emitting method in the code is deprecated.

Check-effect-interaction pattern is correctly covered.

The state management is implemented correctly.

Test coverage

Code coverage of the project is 96%.

Deployment and basic user interactions are covered with tests.

Test cases covers most of possible scenarios.

Interactions by several users are tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 4 low severity issues,

leading to a security score of 9 out of 10.

After fixing all findings, the security score is reached to 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.1. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Admin can freeze the protocol at any time.

There are multiple instances of precision losses.

Early withdrawal penalties can be bypassed.

The emergency_asset_distribution() function is only callable by admin. This function is

designed to send tokens back to users during an emergency situation. Therefore, other users

should be able to call this function too.

PROPS token was not audited since it was not included in the audit scope. Therefore, it is

impossible to ensure the PROPS token is secure.

8

Findings

Vulnerability Details

F-2024-0826 - Early withdrawal penalty bypass by chunking

withdrawal amount - Medium

Description: The Propbase protocol uses $PROPS token for staking operations. The

protocol distributes staking rewards as $PROPS to stakeholders. In

addition, admin of the protocol sets a penalty_rate during the pool

creation. The penalty rate amount can be set between 1 and 50. The

purpose of this variable is to penalize early withdrawals.

The penalty calculation can be seen at below:

let penalty = amount / 100 * stake_pool_config.penalty_rate;

Currently, there is no lower bound for withdraw amount in the code.

Therefore, it is possible to chunk the total withdraw amount by 99 in order

to bypass this penalty according to the formula above.

let penalty = 99 / 100 * stake_pool_config.penalty_rate (0-50);

penalty = 0;

As a result, it is possible to bypass the early withdrawal penalty due to this

precision loss.

Path:

propbase_staking.move#L562

propbase_staking.move#L596

Assets:
propbase_staking.move [https://github.com/Propbase-

Application/propbase_staking_blockchain]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 3

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 1

9

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/d0d585d1-e51b-4f37-bf7e-1a6ced4c989d

Final Score: 2.8 (Medium)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: Consider adding a lower bound for withdraw_stake() function, so it is

possible to withdraw only amounts higher than 100. This mitigation will

eliminate the precision loss and there will be penalty for early withdrawals.

Remediation (revised commit: 54baa9): The minimum stake amount was

implemented with the latest code fix. Therefore, chunking the withdraw

amount to bypass penalties is not an option anymore.

10

F-2024-0915 - Unnecessary calculations for old stakeholders - Low

Description: The implement_unstake function currently lacks proper handling of

important state variables when a user withdraws their entire stake.

Specifically, the stake_pool_config.staked_addresses variable is not

appropriately decreased in such instances. This oversight has implications

for functions like calculate_required_rewards() and

emergency_asset_distribution(), as they currently consider users

with zero stakes in their calculations.

let length = length(&stake_pool_config.staked_addressess);

Additionally, the functions transfer_principal_and_rewards() and

get_total_rewards_so_far() are called for users with zero stakes,

resulting in unnecessary gas consumption. To optimize gas usage, the

contract should be modified to skip these functions for users with zero

stakes, ensuring more efficient and cost-effective execution.

Path:

propbase_staking.move#L559

propbase_staking.move#L808

propbase_staking.move#L1050

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 2

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 2.0 (Low)

Hacken Calculator Version: 0.6

Recommendations

vector::

11

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/04f5c1ca-082f-4950-b241-7488eaa0d0d8

Recommendation: It is recommended to clear the stake_pool_config.staked_addresses

state variable in case stakers withdraw their entire stakes from the pool.

Remediation (revised commit: 54baa9): The exited_addressess

variable was implemented along with update_addresses_on_exit()

function to track completely withdrawn funds.

12

F-2024-0916 - Users with low stake amounts cannot get any

rewards due to precision loss - Low

Description: The current implementation lacks a lower bound for the

min_stake_amount, leading to potential issues for users with stakes

lower than seconds_in_year. For instance, if a pool is created with a

min_stake_amount of 1000000, there is a risk that the

interest_per_rate calculation may consistently return zero due to

precision loss.

inline fun apply_reward_formula(

principal: u64,

period: u64,

interest_rate: u64,

seconds_in_year: u64

): u128 acquires StakePool {

let interest = ((principal as u128) * (interest_rate as u128));

let interest_per_sec = interest / (seconds_in_year as u128);

let remainder = interest % (seconds_in_year as u128);

let total_interest = (interest_per_sec * (period as u128)) + ((remai

nder * (period as u128)) / (seconds_in_year as u128));

total_interest / 100

}

Another scenario where this problem may arise is through the

withdraw_stake function. In such cases, if the remaining stake

(calculated as principal multiplied by interest rate) after a

withdraw_stake operation falls below seconds_in_year, the total

reward for these users will be inaccurately calculated as zero. To address

this, it is advisable to introduce a lower bound for the min_stake_amount

to ensure that users with stakes below seconds_in_year can still

receive benefits from the reward distribution.

Path:

propbase_staking.move#L658

propbase_staking.move#L659

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

13

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/7210b1f6-b950-4219-a4c5-40dd9328a1ee

Recommendations

Recommendation: Consider adding a lower bound for the minimum withdrawal amount. In

addition, the min_stake amount on the configuration should not be also

lower than seconds_in_year variable in order to prevent the precision

loss.

Remediation (revised commit: 54baa9): The minimum stake amount was

implemented with the latest code fix. Therefore, precision loss is unlikely

at the function specified above.

14

F-2024-0917 - Rewarding formula inconsistency between the

documentation and the code - Low

Description: During the security audit, a discrepancy was identified between the

reward equation depicted in the staking diagram and the implementation

in the apply_reward_formula function. To maintain a robust and

consistent system, it is imperative that the specifications outlined in the

whitepaper documentation precisely match the code. We recommend

updating the staking diagram to accurately reflect the calculation

performed by the code.

The rewarding formula on the staking diagram shown below:

(((period) / 100) * (principal / seconds_in_year)) * interest_rate

The actual reward calculation in the code:

let interest = ((principal as u128) * (interest_rate as u128));

let interest_per_sec = interest / (seconds_in_year as u128);

let remainder = interest % (seconds_in_year as u128);

let total_interest = (interest_per_sec * (period as u128)) + ((remai

nder * (period as u128)) / (seconds_in_year as u128));

total_interest / 100

The equation presented in the staking diagram results in higher rewards

than the accurate calculation. Should this incorrect equation be utilized

during pool creation for the required_reward calculation, it could lead to

the distribution of more rewards than initially anticipated. Therefore, it is

crucial to rectify the diagram's equation to ensure that the reward

distribution aligns with the intended calculations and adheres to the

expected security standards.

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 2

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 2.0 (Low)

Hacken Calculator Version: 0.6

Recommendations

15

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/50dd428b-7358-441d-b76b-4373fcf3dd17

Recommendation: It is recommended to update the official documentation with the correct

formula to prevent any possible inconsistencies.

Remediation (revised commit: 54baa9): The outdated graph was

replaced with the more prior version. The new graph eliminated this issue.

16

F-2024-0934 - Underconfigured state is possible - Low

Description: State resources such as StakePool, StakeApp, RewardPool are not

initialized atomically. This means there is a possibility for the state to be

underconfigured when it is being used. Setting/updating some of the

fundamental fields is optional but the validity of the state is mandatory.

if(set_interest_rate) {

assert!(interest_rate > 0 && interest_rate <= 100, invalid_ar

gument(E_STAKE_POOL_INTEREST_OUT_OF_RANGE));

stake_pool_config.interest_rate = interest_rate;

};

In the example above, it is possible for the owner to unintentionally

underconfigure a fundamental system variable. After staking has started,

the owner would have to deprecate this contract, distribute stakes (the

contract has this functionality), redeploy another contract, and configure it

from scratch.

What is more, under configured state can produce generic errors that do

not give a clue about the actual issue.

Assets:
propbase_staking.move [https://github.com/Propbase-

Application/propbase_staking_blockchain]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 4

Exploitability [0-2]: 1

Complexity [0-2]: 1

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: The state should be initialized and valid at the moment it is being used. It

is recommended to implement one from the following options:

Add is_valid_state flags for state resources. It must be flipped to

false if any configuration is being performed.

Create validate_state() function.

error::

17

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/031fd00d-d60e-4f91-a24e-456d39508f93

The validate_state() would check is_valid_state flags in

resources, and if it is false - check the validity of the state and set a flag

to true or assert an error if one is encountered. This function must be

used in user-accessed functions. Also, access to state configuration

functions should depend both on the epoch_start_time and

is_valid_state.

Remediation (revised commit: 54baa9): The PROPBASE team solved this

issue by introducing is_valid_state variable with the latest update.

The protocol now checks this new state variable to prevent

underconfigured state.

18

Observation Details

F-2024-0920 - Too generic assertion errors - Info

Description: The presence of assertion errors in the code raises concerns, particularly

those deemed too generic. These ambiguous assertion errors could

potentially making it challenging to identify and address security issues

promptly. When assertions lack specificity, it hinders effective debugging

and troubleshooting, potentially leading to overlooked vulnerabilities that

might pose security risks. It is crucial to enhance the precision of assertion

errors, providing more informative and detailed messages to facilitate the

identification and resolution of potential security issues in the smart

contract.

assert!(now <= stake_pool_config.epoch_end_time, out_of_range

(0));

Path:

propbase_staking.move#L574

propbase_staking.move#L576

propbase_staking.move#L867

propbase_staking.move#L1021

propbase_staking.move#L1115

Remediation (revised commit: 54baa9): All asserts with

error::out_of_range(0) message were replaced with more specific

ones.

Status: Fixed

Recommendations

Recommendation: It is recommended to replace the zero error code with another variable-

mapped error code in order to specify the exact error code.

error::

19

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/d563f547-a512-4c34-b456-924c1fe8d8fe

F-2024-0921 - Unknown upgrade policy - Info

Description: The Move.toml configuration file lacks an explicit identification of the

upgrade policy. Within the Aptos blockchain, the capability for upgrading

Move code, including Move modules, exists. This functionality empowers

code owners and module developers to seamlessly update and enhance

their contracts. The upgrade process occurs under a single, stable, and

well-known account address, ensuring consistency.

In the absence of a specified upgrade policy in the configuration file, there

is a risk of ambiguity regarding how and when upgrades may take place. It

is essential to clearly define the upgrade policy to provide transparency

and ensure that code owners and module developers can effectively

manage and evolve their contracts.

Furthermore, if the current version of the code is considered final and

should not undergo further modifications, it is strongly recommended to

employ the immutable keyword for the upgrade_policy field. This

designation ensures that the code remains immutable, providing clarity

and preventing unintentional modifications after reaching the desired final

version.

References:

https://aptos.dev/move/book/package-upgrades/#upgrade-policies

Remediation (revised commit: 54baa9): This finding is resolved by the

PROPBASE team after they added immutable keyword as their

upgrade_policy.

Status: Fixed

Recommendations

Recommendation: Consider using immutable keyword for the upgrade_policy field if the

code will not take any further updates.

20

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/c1f3d335-0800-4ddf-b0ef-7b5dc121d9d0
https://aptos.dev/move/book/package-upgrades/#upgrade-policies

F-2024-0933 - Using deprecated events type - Info

Description: Event-handle events are deprecated. Module events should be used

instead. While event-handle events might still work, the Aptos team

encourages projects to move to the module events.

Example of use:

#[event]

struct SetAdminEvent has drop, store {

old_admin: address,

new_admin: address,

}

...

emit(SetAdminEvent {

old_admin: old_admin,

new_admin: new_admin_address

});

Assets:
propbase_staking.move [https://github.com/Propbase-

Application/propbase_staking_blockchain]

Status: Fixed

Recommendations

Recommendation: Consider migrating to module events. Event structs will need an #[event]

annotation. Event handles are no longer needed. Emitting is done through

event::emit() function.

Remediation (revised commit: 54baa9): All events in the code were

refactored into their more prior version.

External References:
Aptos team encourages migration to new events

Proposal description

event::

21

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/626ee19d-5a88-470d-b2d4-837c84787407
https://aptos.dev/concepts/events/#migration-to-module-events
https://github.com/aptos-foundation/AIPs/blob/main/aips/aip-44.md

F-2024-0935 - Literal value is used - Info

Description: In create_or_update_stake_pool(), a literal number 20000000000 is

used. It is a best practice to use named constants whenever a known

value is used.

Assets:
propbase_staking.move [https://github.com/Propbase-

Application/propbase_staking_blockchain]

Status: Fixed

Recommendations

Recommendation: Consider extracting the aforementioned number into a constant.

Remediation (revised commit: 54baa9): The hardcoded max stake field

was removed from the code.

22

https://portal.hacken.io/App/Projects/Details/3eeeb9f2-8bab-4aaf-8ecd-7b5292a7b6c3/Finding/c5cb4a39-5e6e-4340-8163-1c81e61c178b

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

23

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

24

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository
https://github.com/Propbase-

Application/propbase_staking_blockchain

Commit a81b2c998a43b164083917ff9c08073fc4372acc

Remediation Commit 9416b9a04f7109cc40ef9ad586dfc385d8932f08

Whitepaper README.md

Requirements README.md

Technical

Requirements
README.md

Contracts in Scope

./sources/propbase_staking.move

https://github.com/Propbase-Application/propbase_staking_blockchain
https://github.com/Propbase-Application/propbase_staking_blockchain/blob/main/README.md
https://github.com/Propbase-Application/propbase_staking_blockchain/blob/main/README.md
https://github.com/Propbase-Application/propbase_staking_blockchain/blob/main/README.md

