
Smart Contract Code

Review And Security

Analysis Report

Customer: USSD

Date: 07/03/2024

We express our gratitude to the USSD team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

USSD is an autonomous stablecoin with crypto collateralization.

Platform: EVM �Ethereum, Arbitrum, BNB Smart Chain, Optimism)

Language: Solidity

Tags: Oracle, Staking, Stablecoin

Timeline: 15/01/2024 � 07/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/DavidLeeChaum/USSDv2/

Commit bf57fe60453768e41fdfb27b683abbffe9a700d6

2

https://hackenio.cc/sc_methodology
https://github.com/DavidLeeChaum/USSDv2/

Audit Summary

9/10 10/10 N/A 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.3/10
The system users should acknowledge all the risks summed up in the risks section of the report.

Mitigated issues are excluded from the Total Findings count.

7 6 1 1
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 2

Medium 3

Low 1

Vulnerability Status

F�2024�0540 � Arbitrage Opportunities Can Affect The Price Stability Accepted

F�2024�0497 � Missing Checks for Zero Address Fixed

F�2024�0515 � Funds Lock On the Insurance Contract Fixed

F�2024�0518 � The Staking Rewards Are Not Minted Fixed

F�2024�0519 � Staking Rewards are Not Separated From Users Balances Fixed

F�2024�0520 � Insurance Tokens are Transferable Independent From Collateralization Level Fixed

F�2024�0521 � Flashloan Attack to Increase The Staking Rewards Fixed

3

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/16567323-6e7a-4842-b01f-f6ee5575985d
https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/69812b16-ad74-4c0d-947f-25b76c83dd0c
https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/5c0ccf6c-9c07-4a0b-a1e1-d187d904e342
https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/4889273b-1a5a-4cb9-abdc-3e3cf771c536
https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/44a6478a-3f65-4b8a-a440-44aa24e8cbc0
https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/d1a6cc5e-350c-4a06-b8b7-aeb484cfc4a2
https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/898d42a3-6a8c-4044-ab20-99dd152bc910

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for USSD

Audited By Maksym Fedorenko, Roman Tiutiun

Approved By Przemyslaw Swiatowiec

Website https://www.ussd.ai/

Changelog 22/01/2024 � Preliminary Report

22/02/2024 � Second Review

07/03/2024 � Third Review

4

https://www.ussd.ai/

Table of Contents

System Overview 7

Privileged Roles 7

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 19

Disclaimers 27

Appendix 1. Severity Definitions 28

Appendix 2. Scope 29

System Overview

USSD is an autonomous stablecoin with crypto collateralization with the following contracts:

USSD � an autonomous on-chain stablecoin system. The contract uses the ERC20 standard for

token implementation and includes additional functionality for minting, redeeming, and managing

the stablecoin. It also interacts with external contracts and oracles to determine asset prices and

manage collateral.

USSDRewards — is an extension of the ERC20 token standard. This contract is designed to

distribute rewards through USSDToken tokens to users who hold the USSDRewards token. The

rewards are calculated based on the average percentage yield �APY� over time and the total

supply of staked tokens.

stUSSD � is a staking token, where users can deposit a token (presumably called USSD� and

receive stUSSD tokens in return, which may earn rewards over time. The contract includes

functionality for depositing, withdrawing, and redeeming tokens, as well as accounting logic to

manage the relationship between assets and shares.

ICT � is a contract that deals with insurance and rewards, using two types of tokens: WETH

(Wrapped Ether) and WBGL (presumably another token). The contract allows users to mint new

tokens in exchange for WETH or WBGL and to claim insurance under certain conditions.

Privileged roles

The USSD contract owner has the flexibility to add a staking contract, insurance contract, and

configure oracles. Additionally, they can enable WETH and DAI tokens as collateral, but it is

important to note that these actions above in this paragraph can be performed only once ever by

the admin.

The admin role may be transferred from one user to another multiple times.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is N/A

Code coverage cannot be calculated due to the lack of Truffle framework support by the code

coverage tools.

While the project includes tests, they do not cover all possible branches. Test coverage is

assumed to be 100% due to the inability to measure coverage.

Security score

Upon auditing, the code was found to contain 1 critical, 2 high, 3 medium, and 1 low severity issues.

The 1 critical, 2 high, and 1 medium severity issues were promptly addressed, fixed, mitigated or

accepted as part of the remediation efforts. After the remediation check of the audit process, 1

medium severity issues were accepted by the client, leading to a security score of 9 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.3. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The repository includes dependencies beyond the audit scope, introducing potential security

risks associated with third-party code such as the solmate library and third-party protocols like

Oracles and DEXs. Due to the composability of contracts, these external dependencies pose

inherent security risks that are not covered in the audit.

The stable coin collaterization ratio might fall lower 100% any time due to the collateral

tokens price fluctuations.

If the collateral ratio is below 95%, then the conversion of USSD within the protocol is only

possible with a 5% discount. For example with the 0.94 collateral ratio the protocol has only 0.94

cents of collateral to cover one USSD token, but with the discount it would be possible to convert

one USSD to only 0.893 USD of collateral (Collateral ratio * (1 - discount) = 0.94

* 0.95 = 0.893)

Before using the system it is recommended to make sure that the proper Oracles addresses are

specified within the next variables: STABLE_ORACLE, STABLEDAI_ORACLE, WBGL_ORACLE,

WBTC_ORACLE, and WETH_ORACLE. The reliability of these Price Oracles themselves poses a risk

independent of the USSD admin's behavior.

Excessive minting of USSD may occur, the risk arises not from the minting process itself, but from

staking reward minting. This risk could materialize if collateral value updates are delayed.

Collateral value updates occur during USSD token minting against collateral or can be triggered

by anyone at any time. The admin must ensure timely updates, or trigger them if necessary.

Insurance contract may not have enough funds to increase the collaterization ratio sufficiently.

8

Findings

Vulnerability Details

F-2024-0518 - The Staking Rewards Are Not Minted - Critical

Description: The USSD contract contains a mintRewards function intended to mint

USSD tokens as interest for staking via the USSD staking or insurance

contracts. The function is only callable by stakingContract and

insuranceContract contracts. However, this function is not used within

the project, resulting in no interest being generated for staking either ICT

or USSD tokens.

This contradicts the stated requirements, which specify that ICT and

USSD tokens should be capable of being staked to earn interest in the

form of USSD tokens.

Assets:
ussdv2/contracts/USSD.sol []

Status: Fixed

Classification

Severity: Critical

Impact: 5/5

Likelihood: 5/5

Recommendations

Recommendation: Revise the existing logic to ensure the mintRewards function is utilized

according to the requirements. This change will align the system with its

initial requirements, enabling the minting of USSD tokens as a reward for

staking ICT and USSD tokens.

Remediation (revised commit: c14801b): The mintRewards function is

now called within the USSDRewards.sol staking core implementation.

9

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/4889273b-1a5a-4cb9-abdc-3e3cf771c536

F-2024-0519 - Staking Rewards are Not Separated From Users

Balances - High

Description: The USSDRewards.sol contract, integral to the staking mechanism,

enables users to stake USSD tokens through the stUSSD.sol

implementation. This contract enables the rewards based on a

collateralization ratio exceeding 1.05 over a designated staking period.

However, the current implementation permits users to claim the rewards

even when the contract does not hold a sufficient amount of USSD tokens

to cover all the previously staked tokens and accrued rewards. Such

reward withdrawals can deplete the contract's total balance, adversely

impacting the funds deposited earlier.

This flaw could potentially lead to a scenario where users are unable to

withdraw their tokens due to the contract's insufficient funds, especially if

multiple users consequently initiate the withdrawals.

Assets:
ussdv2/contracts/USSDRewards.sol []

Status: Fixed

Classification

Severity: High

Impact: 4/5

Likelihood: 5/5

Recommendations

10

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/44a6478a-3f65-4b8a-a440-44aa24e8cbc0

Recommendation: To address the issue, implement a separate variable to account the total

staked tokens, distinct from the reward balances. This separation ensures

that rewards are not paid out from the tokens staked by users. In the

functions that handle user reward claims, by calling the _claim function,

ensure that these rewards are sourced exclusively from the designated

rewards balance, not from the users' staked tokens.

Additionally, introduce a mechanism that allows users to emergently

withdraw their staked tokens in scenarios where there is an insufficient

rewards balance. This feature provides an extra layer of security and

flexibility for users in the event of a shortfall in the rewards fund.

Remediation (revised commit: c14801b): The tokens for the rewards are

now minted.

11

F-2024-0521 - Flashloan A�ack to Increase The Staking Rewards -

High

Description: The project's contract, stUSSD.sol, manages the staking of USSD

tokens. Users can stake USSD tokens and claim rewards. Staking is active

when the USSD collateralization ratio exceeds 1.05. The reward depends

on the staked token amount and the total USSD token supply, as

determined by the _calculateRewardsPerToken function, which

computes the reward per staked token:

collateralValuation = ((IUSSD(address(USSDToken)).collateralFactor()

) *

USSDToken.totalSupply() // total supply of USS token

) / 1e6;

rewardsPerTokenOut.accumulated = (rewardsPerTokenIn.accumulated +

(1e18 * ((collateralValuation * elapsed * targetAPY) / 1e18)) /

totalSupply_)

 However, before claiming the reward and initiating reward calculation, it is

feasible to mint additional USSD tokens (significantly, using a flash loan),

thereby inflating the calculated reward. This allows claiming an artificially

increased reward and then redeeming the tokens used for USSD minting

to repay the flash loan.

This issue could lead to an unexpected distribution of staking rewards,

contradicting the technical requirements.

Status: Fixed

Classification

Severity: High

Impact: 4/5

Likelihood: 4/5

Recommendations

Recommendation: Implement a few blocks “cooldown” mechanism for the consequent USSD

token minting and redeeming operations in order to prevent minting and

redeeming the tokens with the help of flashloans within the one block to

avoid staking manipulations.

Remediation (revised commit: 3aad9e7�� Implemented the mechanism

which stores the collateral factor and uses the collateral factor at most

from the previous block which prevent the ability to execute flashloan

attack. The collateral factor is updated on every USSD mint for tokens

12

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/898d42a3-6a8c-4044-ab20-99dd152bc910

(mintForToken). However it is still possible to deposit significant amount

of tokens in one block, mint the rewards in the next block and redeem the

initially deposited tokens. Such behaviour is risky and might be arbitraged.

13

F-2024-0515 - Funds Lock On the Insurance Contract - Medium

Description: The insurance contract in the system enables users to deposit either

wETH or wBGL tokens in exchange for ICT �Insurance Capital Treasury)

tokens. ICT tokens can be staked to earn USSD interest. In certain

conditions, users can use the insuranceClaim function to transfer wETH

or wBGL tokens to the USSD contract. This function moves 1% of all

deposited wETH or wBGL. However, wETH transfers only occur if the

insurance balance exceeds 100 ETH �1e20 wei) or 10,000 wBGL tokens.

Below these thresholds, the tokens become permanently locked in the

insurance contract, making them unusable.

This design flaw results in the permanent locking of funds, rendering the

deposited assets for ICT token minting inaccessible.

Assets:
ussdv2/contracts/ICT.sol []

Status: Fixed

Classification

Severity: Medium

Impact: 2/5

Likelihood: 5/5

Recommendations

Recommendation: It is recommended to rework the logic to add the ability to utilize the

locked funds deposited for minting the ICT tokens, for example, by

allowing users to burn the ICT tokens in exchange for initially deposited

funds or share of it.

Remediation (revised commit: bf57fe6�� All the WETH or WBGL tokens

might be utilized as an insurance during the call to the insurance contract.

14

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/5c0ccf6c-9c07-4a0b-a1e1-d187d904e342

F-2024-0520 - Insurance Tokens are Transferable Independent From

Collateralization Level - Medium

Description: The ICT.sol the contract is designed to store insurance tokens for the

case when the collateralization level of the stablecoin drops. Per the

requirements, when the collateralization rate falls below 90%, the

insurance capital should start transferring funds to the main collateral.

Specifically, 1% of the insurance capital's coins (wETH or wBGL� will be

moved to the main USSD contract every 24 hours until the

collateralization level returns to 90%. This process is intended to be

executed through the insuranceClaim function. However, the current

implementation allows this function to transfer funds regardless of the

collateralization level, even above the specified threshold.

This behavior is a deviation from the specified requirement that the

insurance fund transfer should only occur at a specific collateralization

level.

Assets:
ussdv2/contracts/ICT.sol []

Status: Fixed

Classification

Severity: Medium

Impact: 2/5

Likelihood: 5/5

Recommendations

Recommendation: It is recommended to add the conditional statement, which allows the

transferring of the insurance funds only if the collateralization level is 90%

or lower.

Remediation (revised commit: c14801b): The suggested validations

have been implemented, the insurance tokens are now being transfered

when the collaterization ratio falls below 90%.

15

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/d1a6cc5e-350c-4a06-b8b7-aeb484cfc4a2

F-2024-0540 - Arbitrage Opportunities Can A�ect The Price Stability

- Medium

Description: The USSD token's minting process is anchored to the Chainlink price feed.

This reliance could potentially cause a depegging scenario due to

arbitrage opportunities arising from the discrepancies between Chainlink

and Decentralized Exchange �DEX� prices. Such discrepancies occur

because DEXs can update prices every block, providing more current

pricing data. In contrast, Chainlink's price updates are either delayed by

over an hour or triggered only after the price crosses a certain threshold,

such as a 0.25% change in the USDT/USD feed.

This delay in Chainlink's price feed updates could lead to price differences

with real-time DEX prices, thereby creating arbitrage opportunities that

might impact the stability of USSD.

Status: Accepted

Classification

Severity: Medium

Impact: 3/5

Likelihood: 3/5

Recommendations

Recommendation: Implement the price deviation validation across multiple sources �DEXs,

Chainlink oracles) in order to prevent the arbitrage opportunities exploiting

the Chainlink update price intervals.

Remediation (revised commit: c14801b): According to the client's

response: “Introducing more complexity to the mechanism of price

comparison would involve more risks of price information being

misinterpreted. We acknowledge your concern but this problem does not

have an optimal solution yet. Many options would require management,

maintenance, or having backend infrastructure (not fully on-chain, not

autonomous).”

16

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/16567323-6e7a-4842-b01f-f6ee5575985d

F-2024-0497 - Missing Checks for Zero Address - Low

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. "The Missing zero address control" issue

in changeOwner() arises when a Solidity smart contract does not

properly check or prevent interactions with the zero address, leading to

unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

Assets:
ussdv2/contracts/ICT.sol []

Status: Fixed

Classification

Severity: Low

Impact: 4/5

Likelihood: 1/5

Recommendations

Recommendation: It is strongly recommended to implement checks to prevent the zero

address from being set during the changeOwner() of the contract. This

can be achieved by adding require statements that ensure address

parameters are not the zero address.

Remediation (revised commit: bf57fe6�� Recommended validation was

implemented.

17

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/69812b16-ad74-4c0d-947f-25b76c83dd0c

Observation Details

F-2024-0466 - Commented Code Parts - Info

Description: In the contract, USSD.sol lines 139 and StableOracleWBGL lines 32, 34,

and StableOracleUSDT.sol lines 35 � 48 are commented on parts of

the code. This reduces code quality.

USSD.sol:

//require(hasRole(MINTER_ROLE, msg.sender), "minter");

StableOracleWBGL:

//uint256 WETHPriceUSD = ethOracle.getPriceUSD();

//return (WETHPriceUSD * 1e18) / WBGLWETHPrice;

StableOracleUSDT.sol:

/*address[] memory pools = new address[](1);

pools[0] = 0x6fe9E9de56356F7eDBfcBB29FAB7cd69471a4869;

uint256 WBNBUSDTDexPrice = staticOracleUniV3.quoteSpecificPoolsWithT

imePeriod(

1000000000000000000, // 1 BNB

0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c, // WBNB (base token)

0x55d398326f99059fF775485246999027B3197955, // USDT (quote token)

pools, // USDT/WBNB pool uni v3

3600 // period - quote at the block start

);*/

//uint256 WETHUSDFeedPrice = ethOracle.getPriceUSD();

// chainlink price data is 18 decimals for DAI/ETH, so multiply by 1

0 decimals to get 18 decimal fractional

//(uint80 roundID, int256 price, uint256 startedAt, uint256 updatedA

t, uint80 answeredInRound) = priceFeedDAIETH.latestRoundData();

Assets:
ussdv2/contracts/USSD.sol []

ussdv2/contracts/oracles/StableOracleUSDT.sol []

ussdv2/contracts/oracles/StableOracleWBGL.sol []

Status: Fixed

Recommendations

Recommendation: Remove commented parts of the code.

Remediation (revised commit: c14801b): The proposed fix has been

implemented.

18

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/b90f26e0-238d-45ba-ba72-89d0233b260f

F-2024-0496 - Emi�ing Incorrect Event - Info

Description: In the insuranceClaim function, the event InsuranceClaim is emitted

with WETH as the token address even when the claim is for WBGL.

Assets:
ussdv2/contracts/ICT.sol []

Status: Fixed

Recommendations

Recommendation: It is recommended to emit the correct address in the InsuranceClaim

event,

Remediation (revised commit: c14801b): The proposed fix has been

implemented by adding the correct event parameter WBGL in

insuranceClaim() function

19

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/58d0a142-582b-42d0-aaa9-8d41b269ce3c

F-2024-0510 - Redundant Import Statements - Info

Description: The contract StableOracleUSDT and StableOracleWBGL are imported

but never used.

This redundancy in import operations has the potential to result in

unnecessary gas consumption during deployment and could potentially

impact the overall code quality.

Assets:
ussdv2/contracts/USSD.sol []

ussdv2/contracts/oracles/StableOracleWBGL.sol []

Status: Fixed

Recommendations

Recommendation: Remove redundant imports and ensure that the contract is imported only

in the required locations, avoiding unnecessary duplications.

Remediation (revised commit: c14801b): The proposed fix has been

implemented.

20

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/99df4df8-0bbb-4f67-bf7a-a2e24b35618e

F-2024-0511 - Redundant Mathematical Operation - Info

Description: The current implementation in the USSD.sol contract performs

mathematical operations involving multiplication with (10 **

decimals()) / 1e36. Since decimals() consistently returns 6, this

specific operation is redundant and results in unnecessary gas

consumption. To optimize the contract and reduce gas costs, it is

advisable to simplify this calculation by directly using 1e30 instead.

Assets:
ussdv2/contracts/USSD.sol []

Status: Fixed

Recommendations

Recommendation: It is recommended to simplify the aforementioned calculation.

Remediation (revised commit: c14801b): The proposed fix has been

implemented by adding 1e30.in calculateMint() function.

21

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/b40c1c44-08bc-4b12-8e32-5f98e0b5adb3

F-2024-0514 - Redundant Event Declaration RewardsSet - Info

Description: The contract USSDRewards has declared an event RewardsSet but never

used.

This redundancy in event operations has the potential to result in

unnecessary gas consumption during deployment and could potentially

impact the overall code quality.

Assets:
ussdv2/contracts/USSDRewards.sol []

Status: Fixed

Recommendations

Recommendation: Remove the redundant event.

Remediation (revised commit: c14801b): The proposed fix has been

implemented.

22

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/311d5fc2-1e53-41e7-afb5-7886eb66d31c

F-2024-0516 - Missing Variable Visibility Speci�cation - Info

Description: Adding visibility modifiers to variable lastClaimed improves code

readability and explicitly communicates the intended access level for this

variable.

Assets:
ussdv2/contracts/ICT.sol []

Status: Fixed

Recommendations

Recommendation: Specify the visibility of the lastClaimed variable.

Remediation (revised commit: c14801b): The proposed fix has been

implemented lastClaimed was marked as public.

23

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/5cb358c4-cee4-4d36-872b-a4b12f0294bb

F-2024-0522 - Redundancy with Solmate and OpenZeppelin in Safe

Transfers and ERC-20 Interactions - Info

Description: The smart contracts USSDRewards.sol, USSD.sol, stUSSD.sol,

ICT.sol, incorporates both Solmate and OpenZeppelin libraries for

handling safe transfers and ERC�20 interactions. While these libraries

serve similar purposes, integrating both may introduce redundancy,

increase contract size, and potentially lead to compatibility issues or

conflicts between the two libraries.

Assets:
ussdv2/contracts/ICT.sol []

ussdv2/contracts/stUSSD.sol []

ussdv2/contracts/USSD.sol []

ussdv2/contracts/USSDRewards.sol []

Status: Fixed

Recommendations

Recommendation: It is recommended to choose either Solmate or OpenZeppelin for handling

safe transfers and ERC�20 interactions consistently throughout the

contract.

Remediation (revised commit: c14801b): The proposed fix has been

changed from OpenZeppelin to Solmate.

24

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/0afeaaff-43cc-4d72-976d-892c4f0256b8

F-2024-0539 - Redundant Code Blocks - Info

Description: In the StableOracleWBGLV2.sol, and StableOracleUSDT.sol

contracts, the constructor argument _wethoracle is not utilized. This

implies that providing the address of the oracles as an argument will not

impact the resulting price returned by the contract.

Redundant parts of the code create excessive Gas costs.

Assets:
ussdv2/contracts/oracles/StableOracleUSDT.sol []

ussdv2/contracts/oracles/StableOracleWBGL.sol []

Status: Fixed

Recommendations

Recommendation: Remove redundant code blocks.

Remediation (revised commit: c14801b): The proposed fix has been

implemented.

25

https://portal.hacken.io/App/Projects/Details/a571256a-d51f-456f-bf34-7a3de1d3f2e6/Finding/d546bf67-c178-487d-810b-c6cd1f67de73

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

26

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

27

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/DavidLeeChaum/USSDv2

Commit bf57fe60453768e41fdfb27b683abbffe9a700d6

Whitepaper -

Requirements -

Technical Requirements Readme.md

Contracts in Scope

ussdv2/contracts/USSDRewards.sol

ussdv2/contracts/USSD.sol

ussdv2/contracts/stUSSD.sol

ussdv2/contracts/ICT.sol

ussdv2/contracts/Migrations.sol

ussdv2/contracts/interfaces/IStableOracle.sol

ussdv2/contracts/interfaces/IStaticOracle.sol

ussdv2/contracts/interfaces/IUSSD.sol

ussdv2/contracts/interfaces/IUSSDInsurance.sol

ussdv2/contracts/oracles/SimOracle.sol

ussdv2/contracts/oracles/StableOracleUSDT.sol

ussdv2/contracts/oracles/StableOracleWBGL.sol

ussdv2/contracts/oracles/StableOracleWBTC.sol

ussdv2/contracts/oracles/StableOracleWETH.sol

28

https://github.com/DavidLeeChaum/USSDv2

