
Smart Contract Code

Review And Security

Analysis Report

Customer: Wormfare

Date: 06/03/2024



We express our gratitude to the Wormfare team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Wormfare is a next-level gaming experience that goes beyond just play-to-earn. Wormfare offers a unique

blend of engaging gameplay, crypto incentives, and magical community quests.

Platform: EVM

Language: Solidity

Tags: ERC20 Presale

Timeline: 22/02/2024 � 06/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/wormfare/contracts/commits/main/

Commit a2b19943777bc505f22e84acdac50ca13b54d6e0

Remediation Commit 39c93e85367d911a7146ea27c70fc0b860df6d2a

2

https://hackenio.cc/sc_methodology
https://github.com/wormfare/contracts/commits/main/


Audit Summary

10/10 10/10 98% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 4 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 3

Vulnerability Status

F�2024�1027 � Lack of Parameter Validation in initialize, setApiSigner, and setTokenPriceUsdt Functions Fixed

F�2024�1029 � Backend API takeover can lead to unlimited token purchase for free Fixed

F�2024�1030 � DEFAULT_ADMIN_ROLE can frontrun buy() transaction Fixed

F�2024�1031 � Checks-Effects-Interactions pattern violation Fixed

3

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/c4d35992-d29e-42ec-bcc3-c8e04184747e
https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/2ad637d9-2278-44bb-90ce-2b8f4fa4f915
https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/cd4de72e-c1f5-4974-942b-6d73d5bb221b
https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/6a6d2c22-b06d-4697-8e53-f896b8817ae0


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of

this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Wormfare

Audited By Niccolò Pozzolini, Kornel Światłowski

Approved By Przemyslaw Swiatowiec

Website https://wormfare.com/

Changelog 26/02/2024 � Preliminary Report; 06/03/2024 � Second Review

4

https://wormfare.com/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings  9

Vulnerability Details 9

Observation Details 16

Disclaimers 22

Appendix 1. Severity Definitions 23

Appendix 2. Scope 24



System Overview

TokenSale is a smart contract that lets its owners presale an ERC20 token before the actual token is issued.

The contract allows users to purchase tokens with USDT, incorporating discount and referral reward

mechanisms. The contract works with a backend API that produces and signs the parameters for a user

when they want to make a purchase. All USDT received except the referral reward part is transferred to a

“treasury” wallet specified during the contract deployment. After purchase, users do not receive actual

tokens, the contract only tracks user token balances.

Privileged roles

TokenSale contract uses the AccessControlUpgradeable library from OpenZeppelin to restrict access to

important functions. The contract contains DEFAULT_ADMIN_ROLE that can:

pause and unpause contract,

update apiSigner address,

update token price in USDT,

buy tokens for someone else without generated signature

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed

scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are detailed.

Technical description is robust.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 98.53% (branch coverage)

Deployment and basic user interactions are covered with tests.

Negative cases are covered.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 3 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score reflects

the combined evaluation of documentation, code quality, test coverage, and security aspects of the

project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

No additional risks were identified.

8



Findings 

Vulnerability Details

F-2024-1027 - Lack of Parameter Validation in initialize, setApiSigner, and

setTokenPriceUsdt Functions - Low

Description: The initialize, setApiSigner, and setTokenPriceUsdt functions in the

TokenSale.sol contract does not perform any validation on its parameters.

This lack of validation can lead to potential misconfigurations due to human

errors.

Specifically, parameters such as _usdtContract, _treasuryWallet, and

_totalTokensForSale in the initialize function, if set incorrectly, cannot

be changed without redeploying the contract. This can lead to significant

inconvenience and potential loss of funds.

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 2

Impact �1�5�� 2

Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 2.0 (Low)

Hacken Calculator Version: 0.6

Recommendations

9

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/c4d35992-d29e-42ec-bcc3-c8e04184747e


Recommendation: To mitigate this issue, it is recommended to:

�� Implement checks in these functions to validate that the parameters are

not zero values.

�� Check address parameters against the zero address.

Remediation(Commit: 39c93e85�� Validation of input parameters has been

added to initialize(), setApiSigner(), and setTokenPriceUsdt()

functions.

10



F-2024-1029 - Backend API takeover can lead to unlimited token

purchase for free - Low

Description: The Backend API facilitates the creation of signatures enabling users to

purchase tokens during the presale. These signatures are generated using

specific data fields, including:

recipient address, 

token amount in USDT, 

discount percentage, 

referral wallet address, 

referral reward percentage, 

sender address.

In a situation when the Backend API is compromised, an attacker can generate

a valid signature with a referral reward percentage set to 100%. With this

signature, the attacker can purchase tokens and subsequently withdraw all

Tether paid during the buy() transaction. This loophole allows the attacker

to repeat the process indefinitely, acquiring an unlimited number of tokens

during the presale. Notably, the current signature mechanism permits infinite

reuse without any implemented deadline for verification.

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 1

Impact �1�5�� 5

Exploitability �0�2�� 2

Complexity �0�2�� 1

Final Score: 1.7 (Low)

Hacken Calculator Version: 0.6

Recommendations

11

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/2ad637d9-2278-44bb-90ce-2b8f4fa4f915


Recommendation: It is recommended to incorporate validation within the buyWithReferral()

function to ensure that the _referralRewardPercent argument value

remains below the introduced cap.

Remediation(Commit: 39c93e85�� Validation of _referralRewardPercent

argument value has been added to the internalBuy() function.

12



F-2024-1031 - Checks-E�ects-Interactions pa�ern violation - Low

Description: State variables are updated after the external calls to the token contract.

As explained in Solidity Security Considerations, it is best practice to follow the

checks-effects-interactions pattern when interacting with external contracts

to avoid reentrancy-related issues.

uint _treasuryWalletAmountUsdt = _amountUsdt;

if (_referralWallet != address(0)) {

//@audit external in buyWithReferral() -> usdtContract.safeTransferFrom(

)

_treasuryWalletAmountUsdt = buyWithReferral(

_to,

_amountUsdt,

_referralWallet,

_referralRewardPercent

);

}

//@audit state variables are updated here

tokenBalances[_to] += _tokenAmount;

totalSoldTokens += _tokenAmount;

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 2

Impact �1�5�� 2

Exploitability �0�2�� 0

Complexity �0�2�� 1

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is suggested to follow the checks-effects-interactions pattern when

interacting with external contracts. Specifically, the storage variables

tokenBalances and totalSoldTokens should be updated before calling the

function buyWithReferral which contains an external call.

Remediation(Commit: 39c93e85�� tokenBalances and totalSoldTokens

storage variables are now updated before external calls. internalBuy() function

follows Checks-Effects-Interactions pattern.

13

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/6a6d2c22-b06d-4697-8e53-f896b8817ae0
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern


F-2024-1030 - DEFAULT_ADMIN_ROLE can frontrun buy() transaction -

Info

Description: Users are able to purchase new tokens with USDT with buy() function. The

quantity of tokens allocated to a user is determined by the current USDT price,

which is stored in the tokenPriceUsdt variable. However, entities possessing

the DEFAULT_ADMIN_ROLE role have the ability to manipulate this price using

the setTokenPriceUsdt() function. Exploiting this vulnerability allows such

entities to front-run user transactions, altering the price to be less favorable

for the user, resulting in them receiving fewer tokens despite paying the same

value in USDT.

uint _tokenAmount = ((_amountUsdt * 1 ether) / _tokenPriceUsdt);

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Classification

Severity: Info

Impact: Likelihood �1�5�� 1

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 1

Final Score: 1.5 �Informational)

Hacken Calculator Version: 0.6

Recommendations

Recommendation: It is recommended add the current USDT price to the signature and validating

whether the passed price matches the value stored within the

tokenPriceUsdt variable.

Remediation(Commit: 39c93e85�� tokenPriceUsdt has been added to

signature.

14

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/cd4de72e-c1f5-4974-942b-6d73d5bb221b


Observation Details

F-2024-1021 - Gas ine�ciency due to missing usage of Solidity custom

errors - Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature known

as "custom errors". These custom errors provide a way for developers to

define more descriptive and semantically meaningful error conditions without

relying on string messages. Prior to this version, developers often used the

require statement with string error messages to handle specific conditions or

validations. However, every unique string used as a revert reason consumes

gas, making transactions more expensive.

Custom errors, on the other hand, are identified by their name and the types of

their parameters only, and they do not have the overhead of string storage.

This means that, when using custom errors instead of require statements

with string messages, the gas consumption can be significantly reduced,

leading to more gas-efficient contracts.

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Recommendations

Recommendation: It is recommended to use custom errors instead of reverting strings to reduce

increased Gas usage, especially during contract deployment. Custom errors

can be defined using the error keyword and can include additional

information.

Remediation(Commit: 39c93e85�� Usage of custom errors has been added.

15

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/de66fe1d-da94-4755-b30c-008f091ed766


F-2024-1022 - Floating pragma - Info

Description: The project uses floating pragmas ^0.8.23.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For example,

they might be deployed using an outdated pragma version which may include

bugs that affect the system negatively.

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version.

Remediation(Commit: 39c93e85�� Pragma version has been locked to

0.8.23.

16

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/fe53d73b-35e5-461a-85b3-af591149a89d


F-2024-1023 - Public functions that should be external - Info

Description: Functions that are meant to be exclusively invoked from external sources

should be designated as external rather than public. This is essential to

enhance both the gas efficiency and the overall security of the contract.

External visibility can be added to initialize() function.

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Recommendations

Recommendation: To optimize gas usage and improve code clarity, declare functions that are not

called internally within the contract and are intended for external access as

external rather than public. This ensures that these functions are only

callable externally, reducing unnecessary gas consumption and potential

security risks.

Remediation(Commit: 39c93e85�� external visibility has been used in

initialize() function.

17

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/f8dcbc45-ede5-44e6-b286-bda6544a608a


F-2024-1024 - Missing events emi�ing for critical functions - Info

Description: Events for critical state changes should be emitted for tracking actions off-

chain.

Events  are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence of

events in these functions means that external entities, such as user interfaces

or off-chain monitoring systems, cannot effectively track these important

changes.

It was observed that events are missing events in the following functions:

setApiSigner()

setTokenPriceUsdt()

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Recommendations

Recommendation: Consider emitting the corresponding events in the critical functions.

Remediation(Commit: 39c93e85�� Events has been added to

setApiSigner() and setTokenPriceUsdt() functions.

18

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/dcf64515-005a-4f1c-a79b-830e17741285


F-2024-1026 - Misleading Parameter Name and Lack of Detailed

Information in NatSpec - Info

Description: The _amountUsdt parameter in the buy, buyFor and internalBuy functions

in the TokenSale.sol file has a potentially misleading name. The USDT token

has 6 decimals, but this parameter is expected to have 18 decimals. This

discrepancy can lead to confusion and potential errors.

Furthermore, this behavior is not detailed in the functions' NatSpec comments,

which should provide comprehensive information about the function and its

parameters for better understanding and usage.

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Recommendations

Recommendation: To improve clarity and prevent potential misunderstandings, it is recommended

to update the NatSpec comments for these functions to clearly indicate the

expected format of this parameter.

Remediation(Commit: 39c93e85��  NatSpec has been updated with

information about expected format of _amountUsdt parameter.

19

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/6eeb0730-6a1d-4b61-9b05-1e96342c5d77


F-2024-1028 - Redundant Math in Token Sale Calculation - Info

Description: In the TokenSale.sol file, there is a block of code that performs unnecessary

calculations. Specifically, when checking if the totalSoldTokens plus

_tokenAmount exceeds totalTokensForSale, it calculates

_redundantTokens and then subtracts this from _tokenAmount.

This operation is redundant because _tokenAmount can be directly set to

totalTokensForSale - totalSoldTokens, which represents the

remaining tokens available for sale. This simplification can improve code

readability and efficiency.

Here is the affected code block:

if (totalSoldTokens + _tokenAmount > totalTokensForSale) {

uint _redundantTokens = totalSoldTokens +

_tokenAmount -

totalTokensForSale;

_tokenAmount -= _redundantTokens;

_amountUsdt = getUsdtPrice(_tokenAmount, _tokenPriceUsdt);

}

Assets:
contracts/TokenSale.sol

[https://github.com/wormfare/contracts/commit/a2b19943777bc505f22e84ac

dac50ca13b54d6e0�

Status: Fixed

Recommendations

Recommendation: Remove the redundant math calculations by setting  _tokenAmount to

totalTokensForSale - totalSoldTokens.

Remediation(Commit: 39c93e85�� Redundant math calculation has been

removed, suggested solution has been implemented.

20

https://portal.hacken.io/App/Projects/Details/19873b81-800f-4790-85c1-04d7511c14d1/Finding/71469dbe-6766-47db-84d2-f207d7ab133b


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report �Source Code); the Source Code compilation, deployment, and

functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of

the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility and

safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to note

that you should not rely on this report only — we recommend proceeding with several independent audits

and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to hacks.

Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

21



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user

funds or contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot

lead to asset loss. Contradictions and requirements violations. Major deviations from best

practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality

score.

22

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/wormfare/contracts/commits/main/

Commit a2b19943777bc505f22e84acdac50ca13b54d6e0

Whitepaper https://whitepaper.wormfare.com/

Requirements https://github.com/wormfare/contracts/tree/main/docs

Technical Requirements https://github.com/wormfare/contracts/tree/main/docs

Contracts in Scope

./contracts/TokenSale.sol

23

https://github.com/wormfare/contracts/commits/main/
https://whitepaper.wormfare.com/
https://github.com/wormfare/contracts/tree/main/docs
https://github.com/wormfare/contracts/tree/main/docs



