
Smart Contract Code

Review And Security

Analysis Report

Customer: Zero1 Labs

Date: 21/03/2024



We express our gratitude to the Zero1 Labs team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

The DEAI smart contract is designed for the issuance and management of the "Zero1 Token" (DEAI), a

digital asset on the Ethereum blockchain. Leveraging OpenZeppelin's upgradeable contracts, DEAI

provides a scalable and secure framework for token minting, burning, and rescue operations, ensuring

long-term operational flexibility and safety

Platform: EVM

Language: Solidity

Tags: ERC-20 Upgradable 

Timeline: 19/03/2024 - 21/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://gitlab.com/hacken-audit-contracts/zero1-token-deai

Commit 3da461f

2

https://hackenio.cc/sc_methodology
https://gitlab.com/hacken-audit-contracts/zero1-token-deai


Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 0

Medium 0

Low 0

Vulnerability Status

F-2024-1600 - Invalid type for argument in function call Fixed

3

https://portal.hacken.io/App/Projects/Details/2e460dac-85a7-4c45-9979-ec1421401354/Finding/01a1f9bd-2525-4514-9ee7-9e5dd23943b8


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Zero1 Labs

Audited By Giovanni Franchi

Approved By Yves Toiser

Website https://z1labs.ai/

Changelog 21/03/2024 - Preliminary Report && 21/03/2024 - Final Report

4

https://z1labs.ai/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings   9

Vulnerability Details 9

Observation Details 11

Disclaimers 12

Appendix 1. Severity Definitions 13

Appendix 2. Scope 14



System Overview

Zero1 Labs is an upgradable ERC-20 composed by the following contracts:

DEAI  — Upgradable ERC-20 token that mints all initial supply to the default admin.  Additional minting

is not allowed. The contract enables burning functionalities restricted to a burning role and capability

to rescue tokens accidentally sent to the contract. 

It has the following attributes:

Name: Zero1 Token

Symbol: DEAI

Decimals: 18

Total supply: 1 billion.

TokensRescuer - Abstract utility contract that enables rescuing tokens accidentally sent to the

contract.

CheckerZeroAddr - Abstract utility contract that serves the purpose of offering a modifier for zero

addresses checks.

Privileged roles

The default admin of the contract can arbitrarily mint to itself the total supply of tokens. This

operation can only occur once.

The default admin of the contract  can arbitrarily assign and revoke burning roles.

The burning role can arbitrarily burn tokens from its own balance.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

The code presents robust NatSpecs.

The code adheres to best practises.

Test coverage

Code coverage of the project is 100% (branch coverage).

Test coverage is not required below 250 lines of code.

Security score

Upon auditing, the code was found to contain 1 critical, 0 high, 0 medium, and 0 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Upgradeable contracts typically rely on an upgrade mechanism controlled by one or more

addresses, introducing centralization and potentially creating single points of failure or trust.

8



Findings  

Vulnerability Details

F-2024-1600 - Invalid type for argument in function call - Critical

Description: The contract includes external functions intended for rescuing ERC20 and

native tokens (rescueERC20Token and rescueNativeToken). These

functions are designed to invoke internal utility functions

(_rescueERC20Token and _rescueNativeToken) to perform the actual

token rescue operations. However, there is a critical mismatch in the order

of arguments passed from the external functions to their internal

counterparts.

When the external rescueERC20Token function attempts to call the

internal _rescueERC20Token function, it passes the arguments (token,

amount, receiver) in an order that does not match the expected order of

the internal function. Similarly, the rescueNativeToken function exhibits

the same issue with its respective internal function call.

This discrepancy leads to a type mismatch error, preventing the contract

from compiling successfully. As a result, the entire contract functionality is

rendered inoperative.

Assets:
zero1-token-deai/contracts/DEAI.sol [https://gitlab.com/hacken-audit-

contracts/zero1-token-deai/-/blob/main/contracts/DEAI.sol?

ref_type=heads]

Status: Fixed

Classification

Severity: Critical

Impact: Likelihood [1-5]: 5

Impact [1-5]: 5

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 5.0 (Critical)

Hacken Calculator Version: 0.6

9

https://portal.hacken.io/App/Projects/Details/2e460dac-85a7-4c45-9979-ec1421401354/Finding/01a1f9bd-2525-4514-9ee7-9e5dd23943b8


Recommendations

Recommendation: Ensure that the order of arguments in the calls from external to internal

functions matches precisely, aligning with the parameters' types and

purposes. This adjustment will resolve the compilation error and restore

the intended functionality of these critical operations.

Correcting this issue requires modifying the external functions to match

the internal functions' expected argument order. No changes are needed

for the internal functions themselves.

Remediation (commit: 1e5edfe8): Right order of arguments passed to

the internal functions has been restored leading to the code being able to

compile and work as intended.

Evidences

Compilation Failure

Files:

10



Observation Details

F-2024-1604 - Absence of Initialization Lock in Upgradeable

Contract - Info

Description: The implementation contract for the upgradeable system lacks the

invocation of _disableInitializers() within its constructor. This function is

crucial for preventing the direct initialization of the implementation

contract once deployed. While this does not pose an immediate security

risk due to the nature of upgradeable contract deployment and interaction

through a proxy, it represents a best practice deviation.

Assets:
zero1-token-deai/contracts/DEAI.sol [https://gitlab.com/hacken-audit-

contracts/zero1-token-deai/-/blob/main/contracts/DEAI.sol?

ref_type=heads]

Status: Fixed

Recommendations

Recommendation: To align with best practices and further secure the contract architecture,

it is recommended to invoke _disableInitializers() in the implementation

contract's constructor. This change ensures that the contract is

immediately locked against direct initialization post-deployment,

reinforcing its role as part of an upgradeable system and preventing any

potential misuse.

constructor() {

_disableInitializers();

}

Remediation (commit: 1e5edfe8): The new version of the contract

abides to upgradability best practices having introduced

_disableInitializers() within its constructor.

External References:
Disable Initializer

11

https://portal.hacken.io/App/Projects/Details/2e460dac-85a7-4c45-9979-ec1421401354/Finding/5924a792-3366-4d52-972c-14b2ee15af09
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

12



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

13

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://gitlab.com/hacken-audit-contracts/zero1-token-deai

Commit 3da461f07af1d3939c188c7f6dc0b331f5faf6c8

Whitepaper N/A

Requirements ./contracts/DEAI doc.pdf

Technical Requirements ./contracts/DEAI doc.pdf

Remediation Scope Details

Repository https://gitlab.com/hacken-audit-contracts/zero1-token-deai

Commit 1e5edfe84c553632aacc6e2c7dc079353eeefc9f

Whitepaper N/A

Requirements ./contracts/DEAI doc.pdf

Technical Requirements ./contracts/DEAI doc.pdf

Contracts in Scope

./contracts/DEAI.sol

./contracts/extensions/CheckerZeroAddr.sol

./contracts/extensions/TokensRescuer.sol

./contracts/interfaces/ITokensRescuer.sol

14

https://gitlab.com/hacken-audit-contracts/zero1-token-deai
https://gitlab.com/hacken-audit-contracts/zero1-token-deai



