
Smart Contract Code

Review And Security

Analysis Report

Customer: Aviator

Date: 05/04/2024

We express our gratitude to the Aviator team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

SkyBridge by Aviator Technologies, LLC is a custom bridge and launchpad solution between the

Ethereum Layer-1 and the Base Layer-2 networks that supports any arbitrary ERC-20 token.

Platform: EVM, Optimism

Language: Solidity

Tags: Bridge, Liquidity Pool.

Timeline: 08/03/2024 - 05/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/AviatorAC/skybridge

Commit 33a578d7766781cb1366355797b0c20759ffd856

2

https://hackenio.cc/sc_methodology
https://github.com/AviatorAC/skybridge

Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

3 3 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 1

Low 1

Vulnerability Status

F-2024-1381 - Unrestricted Fees Fixed

F-2024-1500 - Mismatch Between Documentation and Implementation Fixed

F-2024-1511 - Unexpected Allowance Required to Bridge Tokens Fixed

3

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/22d784ab-c34e-4016-8b3d-208ff0d5748d
https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/16a3dcf7-24c8-4739-99d2-428d29a36610
https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/94669ee9-5e6d-4aff-8027-ea3c1061b1e1

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Aviator

Audited By Maksym Fedorenko, Roman Tiutiun

Approved By Grzegorz Trawinski

Website https://hacken.io

Changelog 15/03/2024 - Preliminary Report, 05/04/2024 - Final Report

4

https://hacken.io/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 13

Disclaimers 18

Appendix 1. Severity Definitions 19

Appendix 2. Scope 20

System Overview

SkyBridge is a custom bridge and launchpad solution between the Ethereum Layer-1 and the Base

Layer-2 networks that supports any arbitrary ERC-20 token. with the following contracts:

L1AviERC721Bridge.sol — is the bridging of ERC721 tokens between different domains (such as

Ethereum Layer 1 and Layer 2 networks).

L1Bridge.sol — is responsible for transferring ETH and ERC20 tokens between L1 and L2. In the

case that an ERC20 token is native to L1, it will be escrowed within this contract.

LiquidityPool.sol — is utilized to provide a central place to hold funds for fast bridging and the

fees from Layer 1 to Layer 2 transfers.

L2AviERC721Bridge.sol — is a contract that works together with the L2 ERC721 bridge to make it

possible to transfer ERC721 tokens from Ethereum to Optimism. This contract acts as an escrow

for ERC721 tokens deposited into L2.

L2Bridge.sol — is responsible for transferring ETH and ERC20 tokens between L1 and L2. In the

case that an ERC20 token is native to L2, it will be escrowed within this contract. If the ERC20

token is native to L1, it will be burnt.

AviPredeploys.sol — it contains constants representing predeployed contract addresses on Layer

1 (L1) and Layer 2 (L2) networks.

AviBridge.sol — is a base contract for the L1 and L2 standard ERC20 bridges. It handles the core

bridging logic, including escrowing tokens that are native to the local chain and minting/burning

tokens that are native to the remote chain.

AviERC721Bridge.sol — it serves as a base contract for both the Layer 1 (L1) and Layer 2 (L2)

ERC721 bridges within the Avi ecosystem.

Privileged roles

Bridge Admin: Full control over the bridges. Able to change the fee structure, change the address

of the liquidity pool, and other bridges, commit the fast withdrawals using the liquidity from the

liquidity pool.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical requirements are provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 100% (branch coverage).

The contracts and libraries are tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 1 high, 1 medium, and 1 low severity issues,

leading to a security score of 4 out of 10. Upon the retest, all issues were fixed resulting in the final

score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The admin can withdraw all the liquidity form the liquidity pool.

The admin can increase the bridging fees up to 10% and flat fees up to 0.005 ETH.

The admin can prevent the bridging event transfer by updating the bridge configuration.

The admin can pause the system.

8

Findings

Vulnerability Details

F-2024-1500 - Mismatch Between Documentation and

Implementation - High

Description: The documentation for the Fee Structure specifies that:

0.3% of tokens bridged are harvested as bridging fees and added

to the bridge liquidity to facilitate fast transfers;

The native protocol token, Aviator (AVI), is excluded from the 0.3%

liquidity fee.

0.002 Ethereum is the protocol fee for bridging ERC-721 tokens.

However, upon reviewing the actual implementation of the

L1AviBridge.sol and L1AviERC721Bridge.sol contract, it is evident

that there is 2.5% fees for all the tokens including the AVI and no fees for

ERC721 tokens.

This discrepancy between the documentation and the contract's code

leads to confusion and potential misunderstandings about the contract's

behavior and capabilities.

Assets:
L1/L1AviERC721Bridge.sol [https://github.com/AviatorAC/skybridge]

L1/L1Bridge.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Classification

Severity: High

Impact: Impact [1-5]: 4

Exploitability [1-2]: 1

Complexity [0-2]: 1

Final Score: 4.3 (High)

Recommendations

Recommendation: Review the documentation and update the implementation to match the

expected result.

9

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/16a3dcf7-24c8-4739-99d2-428d29a36610

Remediation (Revised commit: 4e50fe): The code and documentation

were updated to:

ERC20:

0.001 Ethereum is the protocol fee.

0.3% of tokens bridged are harvested as bridging fees and added

to the bridge liquidity to facilitate fast transfers. (Ex: $1000 USDC =

$3 USDC liquidity fee).

ERC721:

0.002 Ethereum is the protocol fee.

10

F-2024-1511 - Unexpected Allowance Required to Bridge Tokens -

Medium

Description: The contract L1AviBridge has the function _initiateERC20Deposit

which is responsible for initiating bridging of ERC20 tokens. The function

accept the amount of tokens _amount which should be transferred to

another chain, calculates the fees fee and transfers the fees to the

liquidity pool LIQUIDITY_POOL, and locks the tokens without subtracting

the amount transferred for the fees.

This might leads to the user confusion as the amount of tokens which

should be approved before calling the function is different from the

amount utilized by the function, also it contradicts the

_initiateETHDeposit function implementation where the _amount

includes the fees.

Assets:
L1/L1Bridge.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Classification

Severity: Medium

Impact: Likelihood [1-5]: 4

Impact [1-5]: 2

Exploitability [1-2]: 1

Complexity [0-2]: 0

Final Score: 3 (Medium)

Recommendations

Recommendation: It is recommended to rework the logic in order to subtract the fees from

the amount which is intended to be transferred.

Remediation (Revised commit: 57e8060): The code was updated to

ensure the required allowance matches the value specified by the

_amount argument in the _initiateERC20Deposit function.

11

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/94669ee9-5e6d-4aff-8027-ea3c1061b1e1

F-2024-1381 - Unrestricted Fees - Low

Description: The L1AviBridge.sol contract currently does not enforce any

limitations on the system fees that can be applied, allowing for the

possibility of any fees, including 100% or more. setFlatFee(),

setBridgingFee() functions do not impose any restrictions.

function setFlatFee(uint256 _fee) external onlyRole(DEFAULT_ADMIN_RO

LE) {

flatFee = _fee;

}

function setBridgingFee(uint256 _fee) external onlyRole(DEFAULT_ADMI

N_ROLE) {

bridgingFee = _fee;

}

This might lead to the denial of service if a value higher than 100% is

specified or to the users' unexpected expenses if the fee is updated after

the users' deposit is made.

Assets:
L1/L1Bridge.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Classification

Severity: Low

Recommendations

Recommendation: Add the validation to ensure that the fees are lower than the threshold, for

example, 20%.

Remediation (Revised Commit: 5b701ee): The pragma version is set to

0.8.15 in all contracts.

12

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/22d784ab-c34e-4016-8b3d-208ff0d5748d

Observation Details

F-2024-1367 - Floating Pragma - Info

Description: A LiquidityPool.sol uses floating pragmas ^0.8.15 version.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Assets:
L1/LiquidityPool.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Recommendations

Recommendation: Consider locking the pragma version in all contracts.

Remediation (Revised Commit: 5b701ee): The pragma version is set to

0.8.15 in all contracts.

13

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/d269d902-6112-4f01-b09e-8c1ec6eb1a65

F-2024-1378 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

“zero address”. This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address.

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, consider a contract that includes a function to change its

owner. This function is crucial, as it determines who has administrative

access. However, if this function lacks proper validation checks, it might

inadvertently permit the setting of the owner to the zero address.

Consequently, the administrative functions will become unusable.

Function sendETH() in LiquidityPool.sol, constructor() in

L1AviBridge.sol, setOtherBridge() in L1AviBridge.sol,

constructor() in L2AviBridge.sol are lack of missing zero address

validation.

Assets:
L1/L1Bridge.sol [https://github.com/AviatorAC/skybridge]

L1/LiquidityPool.sol [https://github.com/AviatorAC/skybridge]

L2/L2Bridge.sol [https://github.com/AviatorAC/skybridge]

iversal/AviBridge.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Recommendations

Recommendation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Remediation (Revised Commit: 5b701ee): The zero address validation

for function sendETH() in LiquidityPool.sol, constructor() in

L1AviBridge.sol, setOtherBridge() in L1AviBridge.sol,

constructor() in L2AviBridge.sol, were implemented.

14

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/ad105d76-89be-4b66-8136-fcbf1b2b8269

F-2024-1486 - Precense of Redundant Code From The Upgradable

Implementation - Info

Description: The system of smart contracts is not upgradable, however it has

redundant code which is common for the upgradable smart contracts,

such proxy implementation Initializer by Openzeppelin, presence of

__gap state array.

This introduce the code redundancy, decreases readability and results in

Gas expenses.

Assets:
L1/L1AviERC721Bridge.sol [https://github.com/AviatorAC/skybridge]

L1/L1Bridge.sol [https://github.com/AviatorAC/skybridge]

L2/L2AviERC721Bridge.sol [https://github.com/AviatorAC/skybridge]

L2/L2Bridge.sol [https://github.com/AviatorAC/skybridge]

iversal/AviBridge.sol [https://github.com/AviatorAC/skybridge]

universal/AviERC721Bridge.sol

[https://github.com/AviatorAC/skybridge]

Status: Fixed

Recommendations

Recommendation: Remove the code related to the upgradable implementation, move the

code from the Initializer to the constructor.

Remediation (Revised Commit: 5b701ee): The issue was fixed by moving

the Initializer to the constructor, and code related to the

upgradable implementation was removed.

15

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/4eb917f5-cb43-4e78-bacd-ade77f3bf0a0

F-2024-1490 - Redundant Getters For The Public State Variables -

Info

Description: The contract has public state variables MESSENGER, and OTHER_BRIDGE,

but also it has getters functions, such as messenger() and

otherBridge(). This introduces code redundancy, during the

compilation the getter is created for each public variable.

AviBridge public OTHER_BRIDGE;

function otherBridge() external view returns (AviBridge) {

return OTHER_BRIDGE;

}

This increases the deployment Gas cost.

Assets:
iversal/AviBridge.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Recommendations

Recommendation: Set public variables to private, internal or remove the getters.

Remediation (Revised Commit: 5b701ee): The recommendations were

implemented by adding visibility internal to the variables.

16

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/98d63467-3f31-47d4-a8f4-e84f7314dcdc

F-2024-1505 - Non-Compliance with Naming Conventions for

Contract and File Names - Info

Description: Solidity best practices suggest that contract names should match their file

names and both should be in PascalCase. PascalCase (or Upper Camel

Case) is a naming convention where each word begins with a capital letter

without spaces. For example, L1AviBridge.

The observed inconsistency in the contract codebase can lead to

confusion and reduce code readability and maintainability.

Assets:
L1/L1Bridge.sol [https://github.com/AviatorAC/skybridge]

L2/L2Bridge.sol [https://github.com/AviatorAC/skybridge]

Status: Fixed

Recommendations

Recommendation: It is suggested to modify the file name accordingly to the contract's name

the file is hosting.

current format: L1Bridge.sol, L2Bridge.sol

suggested format: L1AviBridge.sol, L2AviBridge.sol

Remediation (Revised Commit: 5b701ee): The issue was fixed by

renaming the contract to L1AviBridge.sol, L2AviBridge.sol.

17

https://portal.hacken.io/App/Projects/Details/545a2a63-d7a5-45a3-bd14-80fe8a95ff21/Finding/89b19a39-71bf-40b9-875c-a5eef238248e

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

18

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

19

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Primary Scope

Details

Repository https://github.com/AviatorAC/skybridge

Commit 33a578d7766781cb1366355797b0c20759ffd856

Whitepaper ./Aviator%20SkyBridge%20Technical%20Documenation%20v1.0.pdf

Requirements ./Aviator%20SkyBridge%20Technical%20Documenation%20v1.0.pdf

Technical

Requirements
./Aviator%20SkyBridge%20Technical%20Documenation%20v1.0.pdf

Secondary Scope

Details

Repository https://github.com/AviatorAC/skybridge

Commit 4e50feca34b10d1c0181699f2f4f114870bb29ba

Whitepaper ./Aviator%20SkyBridge%20Technical%20Documenation%20v1.01.pdf

Requirements ./Aviator%20SkyBridge%20Technical%20Documenation%20v1.01.pdf

Technical

Requirements
./Aviator%20SkyBridge%20Technical%20Documenation%20v1.01.pdf

Contracts in Scope

./contracts/L1/L1AviERC721Bridge.sol

./contracts/L1/L1Bridge.sol

./contracts/L1/LiquidityPool.sol

./contracts/L2/L2AviERC721Bridge.sol

./contracts/L2/L2Bridge.sol

./contracts/libraries/AviPredeploys.sol

20

https://github.com/AviatorAC/skybridge
https://github.com/AviatorAC/skybridge

Contracts in Scope

./contracts/universal/AviBridge.sol

./contracts/universal/AviERC721Bridge.sol

21

