
Smart Contract Code

Review And Security

Analysis Report

Customer: Codyfight

Date: 24/04/2024



We express our gratitude to the Codyfight team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Codyfight is a competitive turn-based strategy RPG packed with chess-like depth and ever-evolving

battles against AI-controlled NPCs. 

Platform: Arbitrum One

Language: Solidity

Tags: LERC20, LERC20Burnable

Timeline: 22/04/2024 - 24/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/codyfight/token-contract

Commit af6ea26

2

https://hackenio.cc/sc_methodology
https://github.com/codyfight/token-contract


Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

0 0 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 0

3



This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Codyfight

Audited By Eren Gonen

Approved By Ataberk Yavuzer

Website https://codyfight.com/

Changelog 22/04/2024 - Preliminary Report

24/04/2024 - Final Report

4

https://codyfight.com/


Table of Contents

System Overview 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings  9

Vulnerability Details 9

Observation Details 9

Disclaimers 10

Appendix 1. Severity Definitions 11

Appendix 2. Scope 12



System Overview

The CodyfightToken (CTOK) operates on the Arbitrum blockchain, enhancing Codyfight's gaming

economy through asset exchanges and player rewards. It is a LERC-20 Burnable token equipped with

lossless functionality to freeze fraudulent transactions and features such as token minting and

burning, aimed at reducing transaction costs and incentivizing community participation. The protocol

contracts:

CodyfightToken  — The official token of Codyfight fully inherits the LERC20Burnable contract, which

implements the LERC20 standard with burn and lossless features. It mints the total supply to the

owner in the constructor, and additional minting is not allowed.

It has the following attributes:

Name: Codyfight Token

Symbol: CTOK

Decimals: 18

Total supply: 127,00,00,01

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

Best practices are followed.

The development environment is configured.

Natspec is sufficient.

Test coverage

Code coverage of the project is 100% (branch coverage).

Everything covered with tests.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 0 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The CodyfightToken contract heavily relies on the LERC20Burnable contract previously audited

by Hacken, is out of the scope of this audit.

8



Findings 

Vulnerability Details

Observation Details

F-2024-1481 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x0000000000000000000000000000000000000000 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. 

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

Missing check were observed in the following contract:

./CodyfightToken.sol: constructor()

Assets:
CodyfightToken.sol [https://github.com/codyfight/token-contract]

Status: Fixed

Recommendations

Remediation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

Remediation(e5134f5): The team implemented zero address validation

for the lossless_ input parameter.

9

https://portal.hacken.io/App/Projects/Details/4929fd24-8159-4a02-acea-c842becb3249/Finding/2378adda-2a3c-4ab8-863d-1df70e82ed2c


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

10



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

11

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/codyfight/token-contract

Commit af6ea2680266958b23ea300b41e16ac38d42bf3b

Whitepaper https://codyfight.gitbook.io/white-paper

Requirements
https://github.com/codyfight/token-

contract/blob/main/README.md

Technical

Requirements

https://github.com/codyfight/token-

contract/blob/main/README.md

Contracts in Scope

./contracts/CodyfightToken.sol

12

https://github.com/codyfight/token-contract
https://codyfight.gitbook.io/white-paper
https://github.com/codyfight/token-contract/blob/main/README.md
https://github.com/codyfight/token-contract/blob/main/README.md



