
Smart Contract Code

Review And Security

Analysis Report

Customer: Cryptopia

Date: 11/04/2024



We express our gratitude to the Cryptopia team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Cryptopia, is an innovative blockchain-based game pioneering the future of decentralized, play-to-

earn gaming. Cryptopia designed the smart contract OFT-based bridging solution to power the token

functionalities.

Platform: Ethereum, Polygon

Language: Solidity

Tags: OFT, Fungible Token, Gamify, Bridge

Timeline: 15/03/2024 � 11/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review

Scope

Repository
https://github.com/cryptopia-com/cryptopia-token-

contracts/tree/layerzero

Commit e476da911af21a941d2f63b411bd2d943b40338c

2

https://hackenio.cc/sc_methodology
https://github.com/cryptopia-com/cryptopia-token-contracts/tree/layerzero


Audit Summary  

10/10 10/10 92,86% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

1 1 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 0

Low 1

Vulnerability Status

F�2024�1538 � Lack of two-step ownership transfer Fixed

3

https://portal.hacken.io/App/Projects/Details/90403cfd-b921-4acb-a4f8-2489061e078f/Finding/f20fbad4-40f2-4b8e-9c9d-a13ed180860e


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Cryptopia

Audited By Grzegorz Trawinski

Approved By Ataberk Yavuzer

Website https://cryptopia.com/

Changelog 19/03/2024 � Preliminary Report

11/04/2024 � Final Report

4

https://cryptopia.com/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings   9

Vulnerability Details 9

Observation Details 11

Disclaimers 12

Appendix 1. Severity Definitions 13

Appendix 2. Scope 14



System Overview

The solution is an OFT-based bridge between Ethereum and Polygon blockchains. It uses OFT V2

version.

The CryptosToken is an ERC20 token representing the game currency used in Cryptopia. It supports

ERC20 tokens retrieval accidentally sent to the contract. It has following characteristics:

Name: Cryptos

Symbol: TOS

Decimals: 18

Supply:  1e28

The CryptosTokenOFTAdapter is an OFTAdapter. It allows the existing token to expand to any

supported chain as a native token with a unified global supply, inheriting all the features of the OFT

Standard. This works as an intermediary contract that handles sending and receiving tokens that

have already been deployed.

The CryptosTokenPolygon is an OFT-based �ERC20� token to be deployed on Polygon blockchain. It

supports ERC20 tokens retrieval accidentally sent to the contract. This contract allows to deposit

tokens for a user by Polygon Bridge Depositor and withdraw tokens by a user.

Privileged roles

The owner of the CryptosToken contract can retrieve ERC20 tokens sent to the contract.

The owner of the CryptosTokenPolygon contract can retrieve ERC20 tokens sent to the contract.

Also, it has access to the OFT privileged actions.

The Polygon Bridge Depositor of the CryptosTokenPolygon contract can mint tokens for a user.

The owner of the CryptosTokenOFTAdapter contract has access to the OFT privileged actions.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 92.86% (branch coverage). 

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 1 low severity issues,

leading to a security score of 10 out of 10.  Upon the retest, all remaining issues were fixed.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10.0. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

The solutions uses LayerZero, an interoperability protocol, for ERC20 token bridging purposes.

Thus, tokens are bridged and minted by the third party privileged entities.

8



Findings  

Vulnerability Details

F-2024-1538 - Lack of two-step ownership transfer - Low

Description: The solution implements single step ownership transfer. Thus, accidental

transfer of ownership to unverified and incorrect address may result in

loss of ownership. In such a case, access to every function protected by

the ownership check will be permanently lost. 

The CryptosToken contracts inherits OpenZepplin's Ownable directly.

The CryptosTokenOFTAdapter and CryptosTokenPolygon inherit

Ownable indirectly from the OFT components 

. contract CryptosToken is ERC20, Ownable, CryptopiaTokenRetriever {

contract CryptosTokenOFTAdapter is OFTAdapter {

...

constructor(address _token,address _layerZeroEndpoint, address _owne

r )

OFTAdapter(_token, _layerZeroEndpoint, _owner) Ownable(_owner) {}

}

contract CryptosTokenPolygon is OFT, CryptopiaTokenRetriever {

...

constructor(address _polygonBridgeDepositor, address _layerZeroEndpo

int, address _owner )

OFT("Cryptos", "TOS", _layerZeroEndpoint, _owner) Ownable(_owner)

Assets:
/contracts/ethereum/CryptosToken.sol [https://github.com/cryptopia-

com/cryptopia-token-contracts/tree/layerzero/]

/contracts/ethereum/CryptosTokenOFTAdapter.sol

[https://github.com/cryptopia-com/cryptopia-token-

contracts/tree/layerzero/]

/contracts/polygon/CryptosTokenPolygon.sol

[https://github.com/cryptopia-com/cryptopia-token-

contracts/tree/layerzero/]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 1

Impact �1�5�� 4

9

https://portal.hacken.io/App/Projects/Details/90403cfd-b921-4acb-a4f8-2489061e078f/Finding/f20fbad4-40f2-4b8e-9c9d-a13ed180860e


Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 2.0 (Low)

Recommendations

Remediation: It is recommended to implement a two-step ownership transfer pattern

within the solution, such as OpenZepplin’s Ownable2Step.

Remediation (commit Id:

901e8acc2bf0c77076b5f0dc47ba797d9b5ed2ff): The two-step

ownership transfer pattern is now implemented.

10



Observation Details

F-2024-1559 - Default sharedDecimals() with 6 value is in use - Info

Description: The solution integrates with the LayerZero interoperability protocol that

acts as bridge between chains. It was identified that in each case the

solution uses the default sharedDecimals() implementation with value

set to 6, where the CryptosToken and CryptosTokenPolygon are

ERC20 implementations that uses 18 decimals.

Such implementation results in possibility of transferring tokens amounts

only with top 6 decimal places, where everything smaller cannot be

transferred.

function sharedDecimals() public pure virtual returns (uint8) {

return 6;

}

Assets:
/contracts/ethereum/CryptosToken.sol [https://github.com/cryptopia-

com/cryptopia-token-contracts/tree/layerzero/]

/contracts/ethereum/CryptosTokenOFTAdapter.sol

[https://github.com/cryptopia-com/cryptopia-token-

contracts/tree/layerzero/]

/contracts/infrastructure/CryptopiaTokenRetriever.sol

[https://github.com/cryptopia-com/cryptopia-token-

contracts/tree/layerzero/]

Status: Fixed

Recommendations

Remediation: It is recommended to review the design of the solution and consider

changing the value set within the sharedDecimals() function to satisfy

the business requirement rules.

Remediation: The Client's team confirmed that they do consider usage of

non-EVM based blockchains in future releases. Thus, the current

configuration is consistent with business requirements.

11

https://portal.hacken.io/App/Projects/Details/90403cfd-b921-4acb-a4f8-2489061e078f/Finding/4dee3b9c-9e56-4b20-9bfb-3fe0bc004cb1


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

12



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

13

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository
https://github.com/cryptopia-com/cryptopia-token-

contracts/tree/layerzero

Commit e476da911af21a941d2f63b411bd2d943b40338c

Whitepaper N/A

Requirements
https://github.com/cryptopia-com/cryptopia-token-

contracts/blob/layerzero/docs/Cryptos%20�%20Audit%20Techspec.pdf

Technical

Requirements

https://github.com/cryptopia-com/cryptopia-token-

contracts/blob/layerzero/docs/Cryptos%20�%20Audit%20Techspec.pdf

Contracts in Scope

./source/polygon/CryptosTokenPolygon.sol

./source/errors/AccessErrors.sol

./source/errors/ArgumentErrors.sol

./source/infrastructure/CryptopiaTokenRetriever.sol

./source/errors/AccessErrors.sol

./source/errors/ArgumentErrors.sol

./source/infrastructure/CryptopiaTokenRetriever.sol

./source/ethereum/CryptosTokenOFTAdapter.sol

./source/ethereum/CryptosToken.sol

14

https://github.com/cryptopia-com/cryptopia-token-contracts/tree/layerzero
https://github.com/cryptopia-com/cryptopia-token-contracts/blob/layerzero/docs/Cryptos%20-%20Audit%20Techspec.pdf
https://github.com/cryptopia-com/cryptopia-token-contracts/blob/layerzero/docs/Cryptos%20-%20Audit%20Techspec.pdf



