
Smart Contract Code

Review And Security

Analysis Report

Customer: Kyotoprotocol

Date: 16/04/2024



We express our gratitude to the Kyotoprotocol team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

KyotoProtocol is a carbon-negative blockchain designed to scale the Voluntary Carbon Market (VCM)

and foster the growth of Regenerative Finance (ReFi) by leveraging Web3 technologies. 

Platform: EVM

Language: Solidity

Tags: Staking, Vesting

Timeline: 09/04/2024 - 16/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/KyotoCarbonCo/chain-contracts

Commit 40b3c32

2

https://hackenio.cc/sc_methodology
https://github.com/KyotoCarbonCo/chain-contracts


Audit Summary

10/10 10/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

4 3 0 1
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 0

Low 2

Vulnerability Status

F-2024-2102 - Missed pull over push pattern in RewardsCollector Mitigated

F-2024-2099 - Faulty rewards accountancy logic in staking contract Fixed

F-2024-2100 - Potential locking of staked NFTs due to changeable NFT address Fixed

F-2024-2103 - Hardcoded APY in _rewardsPerTick function Fixed

3

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/fd5b3802-e017-4a8c-b048-22e7fdf148c0
https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/698950d6-839b-46ef-b098-f3d1f78169e3
https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/6b257848-4ed7-4774-9beb-87918b936cc3
https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/7a2fb578-0a85-407d-b998-38397fc76da1


This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for

Kyotoprotocol

Audited By Niccolò Pozzolini

Approved

By
Przemyslaw Swiatowiec

Website https://kyotoprotocol.io

Changelog 11/04/2024 - Preliminary Report; 16/04/2024 - Remediation Report

4

https://kyotoprotocol.io/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 17

Disclaimers 20

Appendix 1. Severity Definitions 21

Appendix 2. Scope 22



System Overview

The scope is composed by the chain contracts of the project KyotoProtocol:

 KyotoVault: Simple Vault contract that allows withdrawing funds by authorized addresses

 KyotoVesting: contract used to prevent migrated funds from flooding Kyoto Network with

liquidity. After migration, tokens are put in the vesting contract and released accordingly to the

vesting schedule - linearly each day over 18 months.

 MigrationStorage:  contract used to handle the migration process for transferring funds to a

vesting contract making sure that the same migration isn't processed twice.

 NodeNFTRegistry: an ERC721 NFT collection contract, used to represent ownership of Kyoto

Network Nodes.

 NodeNFTStaking: staking contract for NFTs. Users can stake their NFTs in the contract and

receive Kyoto in exchange at a fixed rate. It can be unstaked at any time with no penalties.

 RewardsCollector:  contract that can receive Kyoto and distribute it to a configured set of targets

with different weights.

 StakingPool: staking contract for Kyoto, with limits on how much can be staked at any time.

 ValidatorManager: contract that manages the validators of Kyoto Chain.

Privileged roles

KyotoVault

DEFAULT_ADMIN_ROLE: can manage roles

WITHDRAWER_ROLE: can withdraw funds

KyotoVesting

DEFAULT_ADMIN_ROLE: can manage roles

MIGRATOR_ROLE: can create new vesting schedules

MigrationStorage

MIGRATOR_ROLE: can start the migration process

NodeNFTRegistry

DEFAULT_ADMIN_ROLE: can manage roles and act as NODE_MANAGER_ROLE

NODE_MANAGER_ROLE: can mint new NFTs and change URI config

NodeNFTStaking

DEFAULT_ADMIN_ROLE : can manage roles

MANAGER_ROLE: can change NFT collection that can be staked in the contract

RewardsCollector

DEFAULT_ADMIN_ROLE: can update targets and percentages

StakingPool

DEFAULT_ADMIN_ROLE: can manage roles

MANAGER_ROLE: can change financial parameters of the contract

ValidatorManager

owner: can update the validators set

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are complete.

Technical description is provided.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases are covered.

Interactions by several users are tested thoroughly.

Security score

Upon auditing, the code was found to contain 0 critical, 1 high, 0 medium, and 2 low severity issues,

leading to a security score of 10 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Dependency on Unaudited External Libraries: The project utilizes libraries or contracts without

security audits, potentially introducing vulnerabilities. This compromises the security of the

audited system, making it susceptible to attacks exploiting these external weaknesses. Libray

used: PRBMath.

8



Findings

Vulnerability Details

F-2024-2099 - Faulty rewards accountancy logic in staking contract

- High

Description: Both the staking contracts NodeNFTStaking.sol and StakingPool.sol

implement a staking mechanism that allocates a reward rate to each user

and only updates the rewardsPool variable upon unstaking. However,

the current implementation has a flaw in the rewards accounting logic.

The issue lies in the fact that the rewardsPool variable only gets

subtracted by the unwithdrawn rewards, and not by the total rewards

accrued by the user. According to this implementation, if a user claims his

rewards right before unstaking, the rewardsPool would stay untouched.

This faulty logic leads to an incorrect accountancy of rewards in the

contract. Consequently, the output of the function _rewardsMaxTick()

will be skewed upwards, violating the requirement that the contract holds

sufficient balance to pay the rewards up to the tick returned by

_rewardsMaxTick().

Here is the problematic code snippet from NodeNFTStaking:

function unstake(uint256 tokenId) public {

uint256 amount = rewards(tokenId);

Stake storage stake_ = staking[tokenId];

stake_.stakeOwner = address(0);

totalRewardsCorrection -= stake_.appliedCorrection;

totalRewardsPerTick -= REWARDS_PER_TICK;

rewardsPool -= amount;

emit Unstaked(msg.sender, tokenId, amount);

_transfer(msg.sender, amount);

nft.transferFrom(address(this), msg.sender, tokenId);

}

Assets:
NodeNFTStaking.sol [https://github.com/KyotoCarbonCo/chain-

contracts]

StakingPool.sol [https://github.com/KyotoCarbonCo/chain-contracts]

Status: Fixed

Classification

Severity: High

9

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/698950d6-839b-46ef-b098-f3d1f78169e3


Impact: Likelihood [1-5]: 5

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 4.0 (High)

Hacken Calculator Version: 0.6

Recommendations

Remediation: The line rewardsPool -= amount; should be replaced with

rewardsPool -= (stake_.claimedRewards + amount); to correctly

account for all the rewards accrued by the user.

Remediation (commit: c23fe01): The client applied the suggested fix.

Evidences

rewardsPool is not decreased if rewards are collected before unstaking

Reproduce:
function testAudit_DirectUnstake() public {

// initial state

console.log("initial rewardsPool: ");

console.logUint(stakingPool.rewardsPool());

// stake some

stakingPool.stake{value: 5 ether}(address(this));

// time passes

_warp(YEAR);

// direct unstake

uint balancePre = address(this).balance;

stakingPool.unstake(0);

uint balancePost= address(this).balance;

// final state

console.log("balance difference: ");

console.logUint(balancePost - balancePre);

console.log("final rewardsPool: ");

console.logUint(stakingPool.rewardsPool());

}

function testAudit_ClaimThenUnstake() public {

// initial state

console.log("initial rewardsPool: ");

console.logUint(stakingPool.rewardsPool());

// stake some

stakingPool.stake{value: 5 ether}(address(this));

// time passes

_warp(YEAR);

// claim rewards first, then unstake

uint balancePre = address(this).balance;

uint amt = stakingPool.rewards(address(this),0);

stakingPool.claimRewards(0, amt);

stakingPool.unstake(0);

uint balancePost= address(this).balance;

// final state

console.log("balance difference: ");

console.logUint(balancePost - balancePre);

console.log("final rewardsPool: ");

console.logUint(stakingPool.rewardsPool());

}

Results:

10



[PASS] testAudit_DirectUnstake() (gas: 128098)

Logs:

 initial rewardsPool: 

 1000000000000000000

 balance difference: 

 5999999999999995520

 final rewardsPool: 

 4480

[PASS] testAudit_ClaimThenUnstake() (gas: 161047)

Logs:

 initial rewardsPool: 

 1000000000000000000

 balance difference: 

 5999999999999995520

 final rewardsPool: 

 1000000000000000000

11



F-2024-2100 - Potential locking of staked NFTs due to changeable

NFT address - Low

Description: In the NodeNFTStaking.sol contract, the nft variable, which represents

the address of the NFT collection that can be staked in this contract, can

be changed through the setNft() function. This function can be called

by anyone with the MANAGER_ROLE.

The issue arises when this function is triggered during active stakings. If

the nft address is changed while NFTs are staked, those staked NFTs will

get locked in this contract until the previous nft address gets restored.

This is because the unstake() function uses the current nft address to

perform the transferFrom operation.

Here is the problematic code snippet:

function setNft(address newNft) external onlyRole(MANAGER_ROLE) {

nft = ERC721Enumerable(newNft);

}

Assets:
NodeNFTStaking.sol [https://github.com/KyotoCarbonCo/chain-

contracts]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 2.1 (Low)

Hacken Calculator Version: 0.6

Recommendations

Remediation: To solve this issue, the Stake struct should include an additional field

address nft which gets populated in the stake() function. Then, the

unstake() function should use this stored nft address to perform the

transferFrom operation. This ensures that the correct NFT address is

always used, regardless of any changes to the nft variable in the

contract.

12

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/6b257848-4ed7-4774-9beb-87918b936cc3


Remediation (commit: c23fe01): The nft variable has been made

immutable.

13



F-2024-2102 - Missed pull over push pattern in RewardsCollector -

Low

Description: In the RewardsCollector.sol contract, the distribute() function

uses a push pattern to distribute funds to the configured targets. This

pattern can potentially allow a malicious receiver to block the distribution

process, leading to a Denial of Service (DoS) attack.

Here is the problematic code snippet:

function distribute() public {

//...

for (uint256 i; i < targetsLength; i++) {

uint256 distributionTargetAmt = (totalDistAmt * percentages[i]) / DE

NOMINATOR;

_distributeToAddress(targets[i], distributionTargetAmt); // @audit p

ush pattern used here

}

}

The line _distributeToAddress(targets[i],

distributionTargetAmt); pushes the funds to the target addresses. If

one of these addresses is a contract that reverts or consumes all the gas

in the transaction, it could block the distribution process.

Assets:
RewardsCollector.sol [https://github.com/KyotoCarbonCo/chain-

contracts]

Status: Mitigated

Classification

Severity: Low

Impact: Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 2.5 (Low)

Hacken Calculator Version: 0.6

Recommendations

Remediation: A safer approach would be to use a pull pattern. This could be

implemented by setting the withdrawable amounts for each target in the

distribute() function and adding a withdraw() function that allows

14

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/fd5b3802-e017-4a8c-b048-22e7fdf148c0


the receivers to withdraw their funds. This way, even if one receiver fails

to withdraw their funds, it won't affect the others.

Mitigation notes (commit: c23fe01): Only trusted addresses and EOAs

should be provided as distribution targets. The documentation has been

changed accordingly.

15



F-2024-2103 - Hardcoded APY in _rewardsPerTick function - Info

Description: In the StakingPool.sol contract, the _rewardsPerTick() function

contains a hardcoded value representing the Annual Percentage Yield

(APY) of 20%.

Assets:
StakingPool.sol [https://github.com/KyotoCarbonCo/chain-contracts]

Status: Fixed

Classification

Severity: Info

Recommendations

Remediation: To improve code readability and maintainability, this value should be

declared as a constant at the top of the contract. This way, it's clear what

this value represents and it can be easily updated if the APY changes in

the future.

Remediation (commit: c23fe01): The APY has been defined as a constant

variable.

16

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/7a2fb578-0a85-407d-b998-38397fc76da1


Observation Details

F-2024-2098 - Redundant assignment in MigrationStorage's

constructor - Info

Description: In the MigrationStorage.sol contract, the constructor contains a

redundant assignment where the admin variable is assigned to itself. This

operation does not have any practical effect on the functionality of the

contract but it does incur a slight gas cost. More importantly, it can lead to

confusion and reduce the readability of the code. It is recommended to

remove this redundant assignment to improve the clarity of the code.

/**

* @notice Constructor to initialize the contract with the admin, mig

rator, and KyotoVesting contract address.

* @param admin The address of the admin role.

* @param migrator The address of the migrator role.

* @param vesting The address of the KyotoVesting contract.

*/

constructor(address admin, address migrator, IKyotoVesting vesting)

{

admin = admin;

vestingContract = vesting;

_grantRole(DEFAULT_ADMIN_ROLE, admin);

_grantRole(MIGRATOR_ROLE, migrator);

}

Assets:
MigrationStorage.sol [https://github.com/KyotoCarbonCo/chain-

contracts]

Status: Fixed

Recommendations

Remediation: It is suggested to remove the redundant line admin = admin;

Remediation (commit: c23fe01): The redundant assignment has been

removed.

17

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/97312933-f0b0-445e-a5e8-a1d64678467e


F-2024-2101 - Redundant math in stake function - Info

Description: In the NodeNFTStaking.sol contract, the stake() function contains

redundant math during the computation of the correction variable. The

term (int256(totalRewardsPerTick) - oldRewardsPerTick) is

essentially equivalent to REWARDS_PER_TICK as totalRewardsPerTick

is incremented by REWARDS_PER_TICK just before this calculation.

The same applies to the StakingPool.sol contract.

Assets:
NodeNFTStaking.sol [https://github.com/KyotoCarbonCo/chain-

contracts]

StakingPool.sol [https://github.com/KyotoCarbonCo/chain-contracts]

Status: Fixed

Recommendations

Remediation: The line int256 correction = (int256(totalRewardsPerTick) -

oldRewardsPerTick) * int256(_currentTick() - 1); should be

replaced with int256 correction = REWARDS_PER_TICK *

int256(_currentTick() - 1); to improve gas usage and code

readability. This change simplifies the calculation and makes the code

more straightforward to understand.

Remediation (commit: c23fe01): The suggested fix has been applied.

18

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/23ac17a2-f035-4d94-9485-483ecb579250


F-2024-2104 - Lack of Parameter Validation in setValidators Function

- Info

Description: In the ValidatorManager.sol contract, the setValidators() function

does not validate the length of the validators array parameter. This

could potentially allow for an empty set of validators, which should not be

permitted.

Assets:
ValidatorManager.sol [https://github.com/KyotoCarbonCo/chain-

contracts]

Status: Fixed

Recommendations

Remediation: To resolve this issue, a check should be added to ensure that the

validators array has a minimum length before it is assigned to

_validators.

Remediation (commit: c23fe01): The input array is now validated to have

length > 0.

19

https://portal.hacken.io/App/Projects/Details/a9b00cca-43ac-4f33-93a4-0ef802dd353c/Finding/93238069-5b9e-42b7-8dc6-ee5695d696aa


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

20



Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

21

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/KyotoCarbonCo/chain-contracts

Commit 40b3c3292e7bccf8cc04c0608dbe224e75a83789

Requirements kyoto-flows.pdf

Technical Requirements kyoto-flows.pdf, readme.md

Contracts in Scope

./src/KyotoVault.sol

./src/KyotoVesting.sol

./src/MigrationStorage.sol

./src/NodeNFTRegistry.sol

./src/NodeNFTStaking.sol

./src/RewardsCollector.sol

./src/StakingPool.sol

./src/ValidatorManager.sol

./src/interfaces/IKyotoVault.sol

./src/interfaces/IKyotoVesting.sol

./src/interfaces/IRewardsCollector.sol

./src/interfaces/ValidatorSmartContractInterface.sol

./src/libs/Errors.sol

22

https://github.com/KyotoCarbonCo/chain-contracts



