
Smart Contract Code

Review And Security

Analysis Report

Customer: Parallax

Date: 15/04/2024

We express our gratitude to the Parallax team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

CLMM (Concentrated Liquidity Management Mechanism) is an asset manager that allows users to

provide liquidity to Uniswap V3 pools on behalf of Parallax. Parallax performs auto asset management

of users' positions on CLMM with compounding and rebalancing functionality.

Platform: EVM

Language: Solidity

Tags: DEX, Vesting

Timeline: 12/02/2024 - 12/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://bitbucket.ideasoft.io/projects/PAR/repos/clmm

Commit 5f9211e

2

https://hackenio.cc/sc_methodology
https://bitbucket.ideasoft.io/projects/PAR/repos/clmm

Audit Summary

10/10 10/10 93% 9/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.7/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 2 0 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 1

Medium 0

Low 1

Vulnerability Status

F-2024-0981 - Missing Validation For The Pool Configuration Fixed

F-2024-0986 - Missing Refund In The withdrawERC721Token() Function Leads To Stuck Tokens Fixed

3

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/c4841721-5de7-4c94-a98a-48de8c4722e2
https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/5424e0bb-92a6-4397-b042-613be0880800

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Parallax

Audited By David Camps Novi, Viktor Lavrenenko

Approved By Przemyslaw Swiatowiec

Website https://parallaxfinance.org/

Changelog 12/04/2024 - Final Report

4

https://parallaxfinance.org/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 10

Vulnerability Details 10

Observation Details 16

Disclaimers 23

Appendix 1. Severity Definitions 24

Appendix 2. Scope 25

System Overview

CLMMBase.sol - the first implementation in the list that includes admin methods, depositing, and

withdrawal functionality.

CLMMCore.sol - consists of all the storage slots utilized by the protocol to ensure proper storage

scheme integrity during upgrades or delegate calls. CLMMCore also extends all the necessary

@openzeppelin libraries and SwapRouter.

CLMMRouter.sol - provides interactive functions such as depositing, withdrawal, compounding,

claiming, rebalancing, and admin methods. CLMMRouter is the main proxy contract of the CLMM

protocol and holds all the storage set. The functionality of Router is extended with

implementations that do not hold any storage. All the storage is delegated by the router contract.

CLMMUtils.sol - extends CLMMCore and provides functionality that is utilized across all the

entities and prevents functionality replication. Each implementation and Router extend CLMMUtils

to ensure single scheme integrity.

CLMMVault.sol - the second implementation that includes methods for claiming, compounding,

and rebalancing.

CLMMVesting.sol - the third implementation that includes all the functionality for the rewards

vesting that could be activated if the user claims rewards in a specified token.

SwapRouter.sol - provides optimal underlying allocation functionality, calculating the actual ratio

to deposit into the liquidity pool.

UniswapWrapper.sol - the last implementation that consists of several methods to interact with

Uniswap V3 protocol. NOTE: UniswapWrapper does not extend CLMMUtils because it does not

utilize any static memory.

Privileged roles

Owner: able to upgrade contracts, add new or to rebalance pools, pause deposits/vesting, set

various properties such as compound minimal amounts or implementation addresses. Has also all

the rights of User role.

User: able to interact with deposit, withdraw, claim functionality.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 9 out of 10.

Functional requirements are limited.

Business logic is limited. Main ideas are provided but deeper description is missing.

How does each flow work, and what are the expected outputs.

What is the upgradeability and project architecture.

Missing roles description

The technical description is complete.

Code quality

The total Code Quality score is 10 out of 10.

The development environment is configured.

Best practices are followed.

Test coverage

Code coverage of the project is 93% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative cases coverage is provided.

Security score

Upon auditing, the code was found to contain 0 critical, 1 high, 0 medium, and 1 low severity issues,

leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.7. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

Unconventional ERC20 tokens, such as those with fee-on-transfer or deflationary ones, are not

planned for use. However, if they are utilized, it could potentially cause the system’s improper

functioning.

The system possesses an upgradeable feature, implying that the owner can upgrade the system

by substituting the implementation contract of the CLMMRouter. This introduces the potential risk

that subsequent implementations may harbor unforeseen vulnerabilities.

The system permits the owner to retrieve any trapped ERC20 tokens using the

CLMMCore::rescueERC20Token() function. However, there are no constraints on the specific

ERC20 tokens that can be withdrawn. This presents a risk, as the owner could potentially

withdraw the ERC20 reward tokens intended for vesting, which are sent to the CLMMRouter

contract via CLMMRouter::fill() function. This issue is raised in components that haven't been

included in the scope and therefore, only shallowly validated.

The system relies on the secureness of the Owner's private keys, which can impact the execution

flow and secureness of the funds. We recommend this account to be at least 3⁄5 multi-sig.

The owner can change the pool configuration using CLMMRouter::setCompoundConfig() at any

time.

The owner can pause the CLMMRouter contract.

Several interactions of the system are with out-of-scope contracts (see Risk Statement below).

Risk Statement

This audit report focuses exclusively on the security assessment of the contracts within the specified

review scope. Interactions with out-of-scope contracts are presumed to be correct and are not

examined in this audit. We want to highlight that Interactions with contracts outside the specified

scope, such as:

./contracts/extensions/UniswapWrapper.sol: IUniswapV3Factory(uniswapV3Pool),

ISwapRouter(router), IQuoterV2(quoter).

./contracts/core/SwapRouter.sol: CallbackValidation.verifyCallbackCalldata, V3PoolCallee.swap(),

V3PoolCallee.wrap(), OptimalSwap.getOptimalSwap().

./contracts/core/CLMMVault.sol: positionManager.positions(), positionManager.increaseLiquidity(),

positionManager.burn(), positionManager.mint(). IUniswapWrapper(wrapper).getActualRange().

./contracts/core/CLMMUtils.sol: positionManager.collect(), positionManager.positions(),

positionManager.decreaseLiquidity().

./contracts/core/CLMMRouter.sol: positionManager.transferFrom(), positionManager.positions().

./contracts/core/CLMMCore.sol: _rescueNativeToken(), _rescueERC20Token().

./contracts/core/CLMMBase.sol: positionManager.positions(), positionManager.transferFrom(),

positionManager.mint().

have not been verified or assessed as part of this report.

While we have diligently identified and mitigated potential security risks within the defined scope, it is

important to note that our assessment is confined to the isolated contracts within this scope. The

overall security of the entire system, including external contracts and integrations beyond our audit

scope, cannot be guaranteed.

8

Users and stakeholders are urged to exercise caution when assessing the security of the broader

ecosystem and interactions with external contracts. For a comprehensive evaluation of the entire

system, additional audits and assessments outside the scope of this report are necessary.

This report serves as a snapshot of the security status of the audited contracts within the specified

scope at the time of the audit. We strongly recommend ongoing security evaluations and continuous

monitoring to maintain and enhance the overall system's security.

9

Findings

Vulnerability Details

F-2024-0986 - Missing Refund In The withdrawERC721Token()

Function Leads To Stuck Tokens - High

Description: The functions CLMMRouter::withdrawERC721Token() and

CLMMBase::withdrawERC721Token() enable a user to withdraw their

liquidity from the CLMM protocol.

As can be seen from the code snippets below, the function

CLMMBase::withdrawERC721Token() removes the user's shares,

withdraws liquidity from the pool with fees and mints a new position on

UniswapV3. However, it is not always the case that the new position will

have the token values specified in the INPM.MintParams. Uniswap needs

to ensure that the pool keeps its normal state after the deposit, hence it

recalculates the numbers and might leave the remaining values unused.

The function positionManager.mint() is responsible for creating a

position with a pair of tokens and minting the LP ERC721 token to the

recipient. However, at the end of the withdrawal, there are some unused

tokens left on the balance of the CLMMRouter contract, which belong to

the holder and should be sent back.

function withdrawERC721Token(

Pair memory pair,

uint128 shares,

uint256[4] memory amountsOutMinInner,

uint256[3] memory claimAmountsOutMin

) external onlyValidPool(pair) nonReentrant returns (Amounts memory)

{

// Compound and update user's accumulated rewards on the pool

_updateAccumulatedRewards(pair, msg.sender);

// Claim rewards

Amounts memory claimed = _claim(pair, claimAmountsOutMin, false, true

);

//Repay claimed rewards

if (claimed.amount0 > 0) {

pay(pair.token0, address(this), msg.sender, claimed.amount0);

}

if (claimed.amount1 > 0) {

pay(pair.token1, address(this), msg.sender, claimed.amount1);

}

// Perform delegate call on the base implementation contract to withd

raw ERC721 and transfer to sender

return

abi.decode(

_delegateCall(

base,

abi.encodeWithSelector(

withdrawERC721Selector,

pair,

msg.sender,

shares,

amountsOutMinInner

)

),

(Amounts)

10

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/5424e0bb-92a6-4397-b042-613be0880800

);

}

function withdrawERC721Token(

Pair memory pair,

address holder,

uint128 shares,

uint256[4] memory amountsOutMin

) external returns (Amounts memory) {

// Remove shares

(

bytes32 poolId,

INPM.Position memory position,

uint256 liquidity

) = _withdraw(pair, holder, shares);

// Decrease liquidity from pool's ERC721 token

Amounts memory withdrawAmounts = _decreaseLiquidity(

poolInfo[poolId].commonTokenId,

uint128(liquidity),

amountsOutMin[0],

amountsOutMin[1]

);

// Perform swap to the optimal ratio

withdrawAmounts = _optimalSwap(

withdrawAmounts,

poolId,

position,

position.tickLower,

position.tickUpper

);

// Mint ERC721 token

INPM.MintParams memory mintParams = INPM.MintParams({

token0: position.token0,

token1: position.token1,

fee: position.fee,

tickLower: position.tickLower,

tickUpper: position.tickUpper,

amount0Desired: withdrawAmounts.amount0,

amount1Desired: withdrawAmounts.amount1,

amount0Min: amountsOutMin[2],

amount1Min: amountsOutMin[3],

recipient: holder,

deadline: type(uint).max

});

(, , uint256 amount0, uint256 amount1) = positionManager.mint(

mintParams

);

emit Withdraw(

holder,

poolId,

withdrawAmounts.amount0,

withdrawAmounts.amount1,

shares

);

return Amounts({ amount0: amount0, amount1: amount1 });

}

The Proof of Concept can be found below.

Assets:
contracts/core/CLMMBase.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

contracts/core/CLMMRouter.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Classification

11

Severity: High

Impact: Likelihood [1-5]: 5

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 2

Final Score: 3.6 (High)

Hacken Calculator Version: 0.6

Recommendations

Remediation: Utilize a refund functionality to transfer the remaining values to the

depositor.

Remediation (revised commit: ab15594): a call to _refund was added

into CLMMBase::withdrawERC721Token.

Evidences

Proof Of Concept

Reproduce:
Alice mints a position on UniswapV3

Alice deposits her liquidity to the protocol using the position NFT and

the function CLMMRouter::depositERC721Token()

Alice withdraws her liquidity in a time via

CLMMRouter::withdrawERC721Token()

What can be seen from the calculations is that the balance of the

router increased and now stores some remains after the withdrawal

process

Results:
The developed test:

const { users, calm, fee, token0, poolId, service } = await loadFixtu

re(preparing);

const alice = users[0];

let amounts = [1000000000000, 10000000];

const userTokenId = await mintUniPosition(alice.address, amounts[0],

amounts[1], fee);

console.log("Token0 on Router's Balance Before: ", await token0.balan

ceOf(calm.address));

console.log("Token0 on Router's Balance Before: ", await token1.balan

ceOf(calm.address));

await positionManager.connect(alice).approve(calm.address, userTokenI

d);

await calm

.connect(alice)

.depositERC721Token(userTokenId, { token0: token0.address, token1: to

ken1.address }, [0, 0]);

12

const shares = (await calm.userInfo(alice.address, poolId)).shares;

const pair = { token0: token0.address, token1: token1.address };

console.log("Token0 on Router's Balance Before Withdrawal: ", await t

oken0.balanceOf(calm.address));

console.log("Token1 on Router's Balance Before Withdrawal:", await to

ken1.balanceOf(calm.address));

await calm.connect(alice).withdrawERC721Token(pair, shares, [0, 0, 0,

0], [0, 0, 0]);

console.log("Token0 on Router's Balance After Withdrawal: ", await to

ken0.balanceOf(calm.address));

console.log("Token1 on Router's Balance After Withdrawal:", await tok

en1.balanceOf(calm.address));

Output:

Token0 on Router's Balance Before: BigNumber { value: "0" }

Token0 on Router's Balance Before: BigNumber { value: "0" }

Token0 on Router's Balance Before Withdrawal: BigNumber { value: "0"

}

Token1 on Router's Balance Before Withdrawal: BigNumber { value: "0"

}

Token0 on Router's Balance After Withdrawal: BigNumber { value: "2162

5069699" }

Token1 on Router's Balance After Withdrawal: BigNumber { value: "0" }

13

F-2024-0981 - Missing Validation For The Pool Configuration - Low

Description: Functions CLMMRouter::addPool() and CLMMBase::addPool() do not

validate that values compoundMins.amount0 compoundMins.amount1,

and compoundFee meet the following condition:

(compoundMins.amount0 * compoundFee) / PRECISION == 0 ||

(compoundMins.amount1 * compoundFee) / PRECISION == 0,

which allows the owner to add a pool with any compoundMins and

compoundFee.

Any compoundMins and compoundFee values will be used in the

CLMMVault::compound() function. The expected behavior of the

CLMMVault::compound() function is that the fees that are smaller than

pool.CompoundMins won't be used and transferred to the owner. In

reality, with any compoundMins, small collected rewards can be

compounded.

Assets:
contracts/core/CLMMBase.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Classification

Severity: Low

Impact: Likelihood [1-5]: 3

Impact [1-5]: 2

Exploitability [0-2]: 2

Complexity [0-2]: 1

Final Score: 1.7 (Low)

Hacken Calculator Version: 0.6

Recommendations

14

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/c4841721-5de7-4c94-a98a-48de8c4722e2

Remediation: Consider following and implementing the same validation mechanism for

compoundMins.amount0, compoundMins.amount1 and compoundFee as

in the CLMMRouter::setCompoundConfig().

Remediation (revised commit: ab15594): the recommended check was

added into CLMMBase::addPool().

15

Observation Details

F-2024-0953 - Missing Storage Gaps - Info

Description: When working with upgradeable contracts, it is necessary to introduce

storage gaps to allow for storage extension during upgrades.

Storage gaps are a convention for reserving storage slots in a base

contract, allowing future versions of that contract to use up those slots

without affecting the storage layout of child contracts.

Note: OpenZeppelin Upgrades checks the correct usage of storage gaps.

Assets:
contracts/core/CLMMCore.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

contracts/core/CLMMUtils.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Recommendations

Remediation: It is recommended to introduce the storage gaps in the affected contracts.

To create a storage gap, declare a fixed-size array in the base contract

with an initial number of slots. This can be an array of uint256 so that

each element reserves a 32 byte slot. Use the name __gapor a name

starting with __gap_ for the array so that OpenZeppelin Upgrades will

recognize the gap.

To help determine the proper storage gap size in the new version of your

contract, you can simply attempt an upgrade using upgradeProxy or just

run the validations with validateUpgrade (see docs for Hardhat or

Truffle). If a storage gap is not being reduced properly, you will see an error

message indicating the expected size of the storage gap.

Remediation (revised commit: ab15594): storage gaps were introduced

in the base contract CLMMCore.

16

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/381fc772-abee-4e9e-bad7-10377b3cf2a9
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-hardhat-upgrades
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-truffle-upgrades

F-2024-0973 - Missing Events Emitting For Critical Functions - Info

Description: Events allow capturing the changed parameters so that off-chain

tools/interfaces can register such changes with timelocks that allow users

to evaluate them and consider if they would like to engage/exit based on

how they perceive the changes as affecting the trustworthiness of the

protocol or profitability of the implemented financial services. The

alternative of directly querying the on-chain contract state for such

changes is not considered practical for most users/usages.

Missing events do not promote transparency and if such changes

immediately affect users’ perception of fairness or trustworthiness, they

could exit the protocol causing a reduction in liquidity which could

negatively impact protocol TVL and reputation.

The following functions that do not emit any events in the contracts:

./contracts/core/CLMMRouter::resetSelectors()

./contracts/core/CLMMRouter::setVestingStatus()

./contracts/core/CLMMRouter::setCap()

./contracts/core/CLMMRouter::setBase()

./contracts/core/CLMMRouter::setVault()

./contracts/core/CLMMRouter::setVesting()

./contracts/core/CLMMRouter::resetVesting()

./contracts/core/CLMMRouter::fill()

./contracts/core/CLMMRouter::setWhiteList()

./contracts/core/CLMMRouter::switchPoolStatus()

./contracts/core/CLMMRouter::setCompoundConfig()

./contracts/core/CLMMRouter::depositTokens()

./contracts/core/CLMMRouter::depositERC20Token()

./contracts/core/CLMMRouter::depositERC721Token()

./contracts/core/CLMMRouter::withdrawERC20Token()

./contracts/core/CLMMRouter::withdrawERC721Token()

./contracts/core/CLMMRouter::withdrawTokens()

./contracts/core/CLMMRouter::emergencyWithdraw()

Assets:
contracts/core/CLMMBase.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

contracts/core/CLMMRouter.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Recommendations

Remediation: Consider emitting the corresponding events in the critical functions.

17

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/58427cc7-e9e4-4e16-ae72-b43ab7ee8896

Remediation (revised commit: ab15594): Missing events have been

added to all the functions

18

F-2024-0977 - Missing Two-Step Transfer Of Ownership Introduces

Risks - Info

Description: Ownable2Step and Ownable2StepUpgradeable prevent the contract

ownership from mistakenly being transferred to an address that cannot

handle it (e.g. due to a typo in the address), by requiring that the recipient

of the owner permissions actively accept via a contract call of its own.

Assets:
contracts/core/CLMMCore.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Recommendations

Remediation: Consider using Ownable2Step or Ownable2StepUpgradeable instead of

Ownable or OwnableUpgradeable from OpenZeppelin Contracts to

enhance the security of your contract ownership management. These

contracts prevent the accidental transfer of ownership to an address that

cannot handle it, such as due to a typo, by requiring the recipient of owner

permissions to actively accept ownership via a contract call. This two-step

ownership transfer process adds an additional layer of security to your

contract's ownership management.

Remediation (revised commit: ab15594): The

OwnableUpgradeable.sol has been replaced with

Ownable2StepUpgradeable.sol in the CLMMCore.sol

19

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/16be164b-ad6c-4c2c-b33e-98c00be8cdb4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3d7a93876a2e5e1d7fe29b5a0e96e222afdc4cfa/contracts/access/Ownable2Step.sol#L31-L56
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/access/Ownable2StepUpgradeable.sol#L47-L63

F-2024-0980 - Missing Condition Allows Users To Claim Their Vested

Rewards When The Pool is Not Active - Info

Description: Missing onlyValidPool condition in the CLMMRouter::claimVested()

allows users to claim their vested rewards when the pool is not active.

Users should be allowed to claim their vested rewards only from active

pools.

Assets:
contracts/core/CLMMRouter.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Recommendations

Remediation: It is recommended to add onlyValidPool modifier to the

CLMMRouter::claimVested() function.

Remediation (revised commit: ab15594): the modifier onlyValidPool

was added into the CLMMRouter::claimVested() function as

recommended.

20

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/d071b51d-cddb-426a-8a2a-649277a08e48

F-2024-0982 - Duplicate Code Increases Gas Usage - Info

Description: The CLMMRouter::setStatus() function contains a duplicate piece of

code that utilizes additional gas.

The internal functions _requirePaused() and _requireNotPaused()

which have been inherited from the OpenZeppelin

PausableUpgradeable, are also called inside of the modifiers:

whenPaused() and whenNotPaused() respectively.

These modifiers are already used by the internal functions _unpause()

and _pause(), hence there is no need to utilize them again.

function setStatus(bool on) external onlyOwner {

if (on) {

_requirePaused();

_unpause();

} else {

_requireNotPaused();

_pause();

}

}

Assets:
contracts/core/CLMMRouter.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Recommendations

Remediation: Consider removing the unnecessary functions to save additional gas.

Remediation (revised commit: ab15594): the redundant calls were

removed from the code.

21

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/e8b05864-8a85-4bc7-a760-9cb2d5b04101

F-2024-2073 - Missing onERC721Received callback violates best

practices - Info

Description: To deal with ERC721 tokens securely, contracts or recipients should

implement the IERC721Receiver interface by implementing the

onERC721Received callback function. The callback is called every time

the ERC721 token is transferred via the safeTransferFrom(). It is a way

of signaling back to the safeTransferFrom(), that the recipient

understands that it can deal with ERC721 and should implement the

necessary functionality to handle such tokens. Otherwise, the NFTs can be

sent to the contract which cannot work with ERC721 tokens and eventually

stuck. Even though the previously mentioned callback function cannot

guarantee the safety of NFTs, it is recommended to be followed.

Assets:
contracts/core/CLMMRouter.sol

[https://bitbucket.ideasoft.io/projects/PAR/repos/clmm]

Status: Fixed

Recommendations

Remediation: It is recommended to implement onERC721Received in the

CLMMRouter.sol

Remediation: (revised commit: fd372f1): The onERC721Received

callback was implemented in the CLMMRouter.sol

22

https://portal.hacken.io/App/Projects/Details/65df0cdc-3bb9-402d-a675-da251de1dd9e/Finding/56d3f6c3-6c54-4e54-b408-0bf30ade2993
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/IERC721Receiver.sol

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility and

safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

23

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user

funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot

lead to asset loss. Contradictions and requirements violations. Major deviations from best

practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code

quality score.

24

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://bitbucket.ideasoft.io/projects/PAR/repos/clmm

Commit 5f9211e

Whitepaper Whitepaper

Requirements Requirements

Technical Requirements Technical documentation

Contracts in Scope

contracts/core/CLMMBase.sol

contracts/core/CLMMCore.sol

contracts/core/CLMMRouter.sol

contracts/core/CLMMUtils.sol

contracts/core/CLMMVault.sol

contracts/core/CLMMVesting.sol

contracts/core/SwapRouter.sol

contracts/extensions/UniswapWrapper.sol

contracts/interfaces/ICLMMBase.sol

contracts/interfaces/ICLMMCore.sol

contracts/interfaces/ICLMMMinter.sol

contracts/interfaces/ICLMMRouter.sol

contracts/interfaces/ICLMMUtils.sol

contracts/interfaces/ICLMMVault.sol

contracts/interfaces/ICLMMVesting.sol

contracts/interfaces/IDecimals.sol

contracts/interfaces/INonfungiblePositionManager.sol

contracts/interfaces/ITokensRescuer.sol

25

https://bitbucket.ideasoft.io/projects/PAR/repos/clmm
https://docs.google.com/document/d/1lL-hd564QkJNDpKrwFklG34WN16wO2twhP--hcNEGSM/edit#heading=h.vh7ehdcff0e
https://bitbucket.ideasoft.io/projects/PAR/repos/clmm/browse/docs
https://bitbucket.ideasoft.io/projects/PAR/repos/clmm/browse/docs

Contracts in Scope

contracts/interfaces/IUniswapWrapper.sol

contracts/interfaces/IWETH.sol

26

