
Smart Contract Code

Review And Security

Analysis Report

Customer: BlastUp

Date: 09/05/2024

We express our gratitude to the BlastUp team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

BlastUP is a launchpad and staking platform within the Blast blockchain ecosystem.

Platform: Blast(EVM)

Language: Solidity

Tags: Blast, Launchpad, IDO, Staking

Timeline: 24/04/2024 � 26/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/blastupio/launchpad-contracts

Commit cb6957d

2

https://hackenio.cc/sc_methodology
https://github.com/blastupio/launchpad-contracts

Audit Summary

10/10 9/10 75% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 8.8/10
The system users should acknowledge all the risks summed up in the risks section of the report

12 3 7 2
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 9

Vulnerability Status

F�2024�1535 � Signature Replay In Tier Registration Mitigated

F�2024�1540 � Centralization Risk For Privileged Actors Mitigated

F�2024�1534 � Inconsistent Validation Checks Across Token Setting Functions Accepted

F�2024�1543 � Lack of Boundary Checks Accepted

F�2024�1545 � Missing Validation of Tier Hierarchy Accepted

F�2024�1609 � Inconsistency in Token Allocation Post-Claim Accepted

F�2024�1735 � Privileged Functions Susceptible to Front-Running Accepted

F�2024�1738 � `decimals()` is not a part of the `ERC�20` standard Accepted

F�2024�2043 � Fee-On-Transfer Token Handling Flaw Accepted

F�2024�1515 � Chainlink’s latestRoundData() Might Return Stale or Incorrect Results Fixed

F�2024�2028 � Strategic Splitting of Tokens Increases Allocation Unfairly Fixed

F�2024�2040 � Inappropriate Handling of Decimal Precision for Tier Minimum Amounts Fixed

3

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/701f6d87-4151-4c5f-91a6-081b08c92ffe
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/0790de8c-2b6d-4f57-ba00-42b976c59260
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/1e154c2b-306e-47fd-a3c6-ccf5071641e2
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/d757c2db-d277-428b-a2cf-3110e27f824e
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/64cf6ea6-381a-4db2-82a3-24bc3ff3e692
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/8c80db05-b514-455b-b30d-1c302a5c841d
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/34586ab2-74e6-4632-8007-5bc2d750f031
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/21761b00-cc34-4e85-be2f-2038543957ff
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/b34e7db3-dac4-434e-819f-2ed6b8f2df2e
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/6344d0dd-b62b-4b95-ac97-3c40046057d2
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/7bffb8a1-4f5f-4084-b010-7a60e38acc41
https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/b781cb5d-6773-4710-b38c-ccdcacdbcf5c

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for BlastUp

Audited By Eren Gonen

Approved By Ataberk Yavuzer, Kaan Caglan

Website https://blastup.io/

Changelog 06/05/2024 � Preliminary Report

09/05/2024 � Final Report

4

https://blastup.io/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 36

Disclaimers 45

Appendix 1. Severity Definitions 46

Appendix 2. Scope 47

System Overview

BlastUP is a launchpad and staking platform within the Blast blockchain ecosystem with the following

contracts:

Launchpad � The Launchpad contract, built with upgradeable ownership, primarily facilitates the

management of token sales on a blockchain platform. It supports different user tiers, each with

specific minimum amounts and weights that influence their participation in token sales. The contract

interacts with an oracle for pricing conversions and handles registrations, sales, and the claiming of

tokens based on sale conditions and user eligibility.

LaunchpadV2 � The 2.0 version of Launchpad contract. Users able to register their tier and

allocations according to the staked amount on BLPStaking.sol and Inherits Launchpad.sol.

YieldStaking � The contract manages staking through an elaborate system of indexed mappings

and struct arrays that track individual and total stakes, including accrued rewards and withdrawal

timelines. Functionally, the contract allows users to deposit tokens into specific pools �USDB and

WETH�, where these tokens are then "locked" with an associated timer that dictates when they can

be withdrawn. Reward calculations are dynamically adjusted through the integration with rebasing

mechanisms of the staked tokens, allowing the contract to update the staking index based on the

tokens’ new supply metrics after each rebase event.

Privileged roles

The owner of the Launchpad contract can:

Set a new signer address.

Set a new operator address.

Place tokens for a new sale event.

The owner and operator of the Launchpad contract can:

Set new amounts for user tiers.

Set new weights for user tiers.

Set new registration start and end times.

Set a new public sale start time.

Set new FCFS sale start and end times.

Set a new tge start time.

Set a new vesting start time.

Claim remainders after a sale ends.

 The owner of the YieldStaking contract can:

Set the minimum USDB value for stakes.

Set the minimum time required before withdrawals can be made .

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are partially missed.

Use case are provided.

System roles are documented.

Technical description is not provided.

Descriptions of the development environment is provided.

NatSpec are sufficient.

The Launchpad, LaunchpadV2 description is provided.

The YieldStaking description is provided.

Code quality

The total Code Quality score is 9 out of 10.

The development environment is configured.

The majority of functions rely on admin actions rather than implementing governance structures

for decision-making.

Test coverage

Code coverage of the project is 75%.

Coverage tool couldn't be run due to errors.

During the manual inspection, it was identified that unit and fuzz testing are implemented, but

integration tests are absent, leading to the oversight of crucial scenarios. For example, in claim

fuzz testing, the contract consistently returns zero for user rewards, and fuzz testing

successfully claims this zero reward.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 9 low severity issues,

leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

The comprehensive audit of the customer's smart contract yields an overall score of 8.8. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

Risks

Verification Limitations of Backend KYC� KYC verification done via the backend cannot be

verified.

Challenges in Synchronized Reward Distribution: The reward distribution is based on index

updates; therefore, if two users deposit at different timestamps but the index is not updated

before and after when the second user deposits, the system treats them as if they deposited

simultaneously.

Absence of Time-lock Mechanisms for Critical Operations� Without time-locks on critical

operations, there is no buffer to review or revert potentially harmful actions, increasing the risk of

rapid exploitation and irreversible changes.

Absence of Pausable Feature for Unexpected Events: Without the pausable feature, the

contract cannot be immediately paused in the event of unexpected occurrences.

Owner's Unrestricted State Modification� The absence of restrictions on state variable

modifications by the owner leads to arbitrary changes, affecting contract integrity and user trust,

especially during critical operations like minting phases.

Dependency on Unaudited External Libraries� The project utilizes libraries or contracts without

security audits, potentially introducing vulnerabilities. This compromises the security of the

audited system, making it susceptible to attacks exploiting these external weaknesses.

Solidity Version Compatibility: The Solidity version 0.8.20 employs the recently introduced

PUSH0 opcode in the Shanghai EVM. This opcode might not be universally supported across all

blockchain networks and Layer 2 solutions. Thus, as a result, it might be not possible to deploy

solution with version 0.8.20 >= on some blockchains.

9

Findings

Vulnerability Details

F-2024-1535 - Signature Replay In Tier Registration - Medium

Description: In the Launchpad smart contract, the register() function allows users

to register for different tiers (e.g., BRONZE, SILVER, DIAMOND� by

providing a signature from an authorized signer.

function register(uint256 id, Types.UserTiers tier, uint256 amountOf

Tokens, bytes memory signature) external virtual {

require(!placedTokens[id].approved, "BlastUP: you need to use regist

er with approve function");

_validateUserBalanceSignature(amountOfTokens, signature);

_register(amountOfTokens, id, tier);

}

function _validateUserBalanceSignature(uint256 amountOfTokens, bytes

memory signature) internal view {

address signer_ = keccak256(abi.encodePacked(msg.sender, amountOfTok

ens, address(this), block.chainid))

.toEthSignedMessageHash().recover(signature);

require(signer_ == signer, "BlastUP: Invalid signature");

}

This function validates the signature to ensure it was indeed signed by the

authorized signer. However, vulnerability arises due to the signature's

composition—it lacks a nonce or unique identifier for each transaction. As

a result, once a signature is generated for a particular set of parameters

(user, amount, and contract address), it can be reused maliciously for

registering the same user across different tokens without additional

authorization.

This vulnerability allows an attacker to:

Bypass per-token registration controls, gaining unfair access or

financial benefits across multiple tokens.

Potentially manipulate token distribution and tier allocations, affecting

the integrity and fairness of the token sale process.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Mitigated

Classification

Impact: 2/5

Likelihood: 5/5

10

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/701f6d87-4151-4c5f-91a6-081b08c92ffe

Exploitability: Independent

Complexity: Medium

Likelihood �1�5�� 5

Impact �1�5�� 2

Exploitability �0�2�� 0

Complexity �0�2�� 1

Final Score: 3.3 �Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Incorporate a nonce mechanism in the signature generation and

verification process. Each registration attempt should include a unique,

single-use number that is checked against stored values to ensure each

signature can only be used once. Additionally, consider including the

token address in the signed data to ensure that each signature is explicitly

linked to a specific token registration

Resolution: The BlastUp team mitigated the issue with the following statement;

The amount passed within a signature denotes BLP balance

which is not specific to a concrete placedToken so basically this

signature proves that "User X has Y BLP tokens bought from

presale" thus, single signature is correct for any token because it

is used to validate that user has enough balance to claim a

specific tier �Y �� minAmountForTier[tier]) So, if minimal amount

to join TITANIUM tier is 20_000 and user has a singature proving

that he has 20_000 BLP tokens bought earlier, he can claim

TITANIUM tier for any sale.

Evidences

POC

Reproduce:
Setup and Token Placement:

The test initializes by setting up registration periods and token sale

parameters such as prices, volume distributions among tiers, and sale

timings using a struct called PlacedToken.

11

Two ERC20 tokens (assumed here as USDT and DAI) are minted and

approved for the maximum possible amount to the launchpad

contract which handles token placement and registration.

Signature Generation:

A unique signature for a user is generated to authenticate registration

requests. This involves creating a cryptographic digest from the user's

address, the amount of tokens, the launchpad contract address, and

the blockchain ID.

This digest is then signed using the admin's private key, and the

resulting signature is encoded and returned.

Simulating Time Flow and Registration:

The blockchain's virtual time (block.timestamp) is fast-forwarded to

just after the registration period starts, allowing the registration

function to be tested.

A user (address(1)) is set up to register for a specific tier (in this

case, BRONZE) by providing the amount of tokens needed for that

tier, along with the generated signature.

Registration Function Execution:

The user registers for the token sale using the USDT token by calling

the register function with the previously obtained signature.

The same user then attempts to use the same signature to register

again, this time using the DAI token, demonstrating that the signature

can be reused for different tokens within the same registration

parameters.

Verification of Registration:

After both registration calls, the test

See more

Results:

12

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/701f6d87-4151-4c5f-91a6-081b08c92ffe

F-2024-2028 - Strategic Spli�ing of Tokens Increases Allocation

Unfairly - Medium

Description: The current allocation mechanism within the Launchpad contract allows

users to potentially exploit the tier-based weight system by splitting their

tokens across multiple accounts. This can lead to disproportionate

allocations during token sales, undermining the fairness and integrity of

the distribution process.

In the Launchpad system, users are assigned weights based on the

amount of tokens they stake, categorized into tiers like Bronze, Silver, and

Gold. The allocation for token sales is calculated based on these weights.

However, if a user strategically splits their tokens into multiple accounts

such that each qualifies for a lower tier but collectively holds more weight,

they can achieve a higher total allocation than if they had staked all their

tokens in a single account.

Assuming there are two users, Alice and Bob, with the following

conditions:

Bob: Stakes 10,000 tokens, qualifying for the Gold tier with a weight

of 50.

Alice: Splits her 6,000 tokens into three accounts of 2,000 each, each

qualifying for the Bronze tier with a weight of 20.

Calculations:

Allocation Formula:

weight * placedTokens[id].initialVolumeForLowTiers / placedTokens[id

].lowTiersWeightsSum - boughtAmount;

Without Splitting:

Alice's Allocation: 30�1E18/80 �375,000,000,000,000,000

Bob's Allocation: 50*E18/80 �625,000,000,000,000,000

With Splitting:

One of Alice's Accounts Allocation:

20�1E18/110�181,818,181,818,181,818

Total for Alice's Three Accounts:

3�181,818,181,818,181,818�545,454,545,454,545,454

Bob's Allocation Now: 50�1E18/110� 454,545,454,545,545,545

In this scenario, Alice's total allocation increases from

375,000,000,000,000,000 to 545,454,545,454,545,454 by splitting her

tokens, and Bob's allocation decreases from 625,000,000,000,000,000 to

454,545,454,545,545,545 due to the increased number of total weights in

the system. This issue leads to an unfair advantage for users who split

13

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/7bffb8a1-4f5f-4084-b010-7a60e38acc41

their tokens and can manipulate the system to gain higher allocations,

thereby diluting the allocations for other users who might have staked

more tokens in a single account.

Assets:
LaunchpadV2.sol [https://github.com/blastupio/launchpad-contracts/]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Complex

Likelihood �1�5�� 3

Impact �1�5�� 4

Exploitability �0�2�� 0

Complexity �0�2�� 2

Final Score: 3.1 �Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Consider restructuring the minAmountForTier and weightForTier

values, or implementing a different mechanism for calculating tier weights.

Resolution: The BlastUP team fixed the issue in commit be1e27d by implementing

new weights for the tiers.

Evidences

POC

Results:

14

Files: LaunchpadUpgrades.t.sol

15

F-2024-1515 - Chainlink’s latestRoundData() Might Return Stale or

Incorrect Results - Low

Description: The _convertETHToUSDB() function calls out to a Chainlink oracle

receiving the latestRoundData(). If there is a problem with Chainlink

starting a new round and finding consensus on the new value for the

oracle (e.g. Chainlink nodes abandon the oracle, chain congestion,

vulnerability/attacks on the chainlink system) consumers of this contract

may continue using outdated stale or incorrect data (if oracles are unable

to submit no new round is started).

function _convertETHToUSDB(uint256 volume) private view returns (uin

t256) {

// price * volume * real_usdb_decimals / (eth_decimals * oracle_deci

mals)

(, int256 ans,,,) = oracle.latestRoundData();

return uint256(ans) * volume * (10 ** decimalsUSDB) / (10 ** oracleD

ecimals) / (10 ** 18);

}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 3

Impact �1�5�� 3

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 2.4082246852806923 [Low]

Severity: Low

Recommendations

16

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/6344d0dd-b62b-4b95-ac97-3c40046057d2

Remediation: Add checks and timeout mechanisms to make sure the acquired result is

the latest one.

Example:

function _convertETHToUSDB(uint256 volume) private view returns (uin

t256) {

(uint80 roundID, int256 price, , uint256 timestamp, uint80 answeredI

nRound) = oracle.latestRoundData();

require(answeredInRound >= roundID, "Stale price");

require(timestamp != 0,"Round not complete");

require(price > 0,"Chainlink price reporting 0");

}

Resolution: The BlastUP team fixed the issue in commit f47890b by adding the

recommended checks.

17

F-2024-1534 - Inconsistent Validation Checks Across Token Se�ing

Functions - Low

Description: There is a inconsistency in the validation checks implemented across

different functions responsible for setting token-related time stamps and

volumes. While the placeTokens() function incorporates a

comprehensive set of validations to ensure some parameters are within

expected bounds and logical sequencing, similar stringent checks are

noticeably absent in individual setting functions such as

setRegistrationStart(), setRegistrationEnd(), etc.

function placeTokens(PlacedToken memory _placedToken, address token)

external onlyOwner {

…

require(

_placedToken.registrationStart > block.timestamp

&& _placedToken.registrationEnd > _placedToken.registrationStart

&& _placedToken.publicSaleStart > _placedToken.registrationEnd

&& _placedToken.fcfsSaleStart > _placedToken.publicSaleStart

&& _placedToken.saleEnd > _placedToken.fcfsSaleStart && _placedToken

.tgeStart > _placedToken.saleEnd

&& _placedToken.vestingStart > _placedToken.tgeStart,

"BlastUP: invalid timestamps"

);

…

}

function setRegistrationStart(address token, uint256 _registrationSt

art) external onlyOperatorOrOwner {

require(_registrationStart > block.timestamp, "BlastUP: invalid regi

startion start timestamp");

placedTokens[token].registrationStart = _registrationStart;

}

function setRegistrationEnd(address token, uint256 _registrationEnd)

external onlyOperatorOrOwner {

require(_registrationEnd > block.timestamp, "BlastUP: invalid regist

artion end timestamp");

placedTokens[token].registrationEnd = _registrationEnd;

}

Currently, the functions validate that the input timestamps are future-

dated but do not verify the chronological order between them. For

example, the registration end date could be set to occur before the

registration start date if not checked properly. This oversight may lead to

scenarios where token sale phases overlap or occur in an unintended

order, leading to operational disruptions and participant confusion.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 3/5

18

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/1e154c2b-306e-47fd-a3c6-ccf5071641e2

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Likelihood �1�5�� 3

Impact �1�5�� 2

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: To address this issue, implement comprehensive chronological validation

across related timestamp-setting functions to ensure logical sequencing.

Resolution: The BlastUp team acknowledged the issue with the following statement;

Admins are assumed to be trusted and there will always be

possibility that admins enter unexpected values even if we have

more validation checks. Thus, we prefer to keep this as is without

introducing additional complexity.

19

F-2024-1540 - Centralization Risk For Privileged Actors - Low

Description: The Launchpad smart contract currently permits the owner or operator to

modify tier settings, such as weights and minimum required amounts,

through setMinAmountsForTiers() and setWeightsForTiers()

functions without any user permission at any time.

function setMinAmountsForTiers(uint256[6] memory amounts) external o

nlyOperatorOrOwner {

minAmountForTier[UserTiers.BRONZE] = amounts[0];

minAmountForTier[UserTiers.SILVER] = amounts[1];

minAmountForTier[UserTiers.GOLD] = amounts[2];

minAmountForTier[UserTiers.TITANIUM] = amounts[3];

minAmountForTier[UserTiers.PLATINUM] = amounts[4];

minAmountForTier[UserTiers.DIAMOND] = amounts[5];

}

function setWeightsForTiers(uint256[6] memory weights) external only

OperatorOrOwner {

weightForTier[UserTiers.BRONZE] = weights[0];

weightForTier[UserTiers.SILVER] = weights[1];

weightForTier[UserTiers.GOLD] = weights[2];

weightForTier[UserTiers.TITANIUM] = weights[3];

weightForTier[UserTiers.PLATINUM] = weights[4];

weightForTier[UserTiers.DIAMOND] = weights[5];

}

This could allow these values to be set to zero or impractically low figures,

potentially undermining the fairness and integrity of the token sale

process.

Additionally, the contract design allows the owner or operator to

effectively pause token claims post-vesting commencement by setting the

tgeStart to a future date unexpectedly through the setTgeStart()

function. This action renders the getClaimableAmount() function to

calculate zero for all users, preventing any claims from being processed.

function getClaimableAmount(uint256 id, address user) public view re

turns (uint256) {

…

if (block.timestamp < placedTokens[id].tgeStart) return 0;

…

}

function claimTokens(uint256 id) external {

Types.PlacedToken storage placedToken = placedTokens[id];

Types.User storage user = users[id][msg.sender];

uint256 claimableAmount = getClaimableAmount(id, msg.sender);

require(claimableAmount > 0, "BlastUP: you have not enough claimable

tokens");

user.claimedAmount += claimableAmount;

IERC20(placedToken.token).safeTransfer(msg.sender, claimableAmount);

emit TokensClaimed(placedToken.token, id, msg.sender);

}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Mitigated

20

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/0790de8c-2b6d-4f57-ba00-42b976c59260

Classification

Impact: 1/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 1.8 (Low)

Severity: Low

Recommendations

Remediation: To mitigate centralization risks associated with privileged functions,

consider implementing a multi-signature or decentralized governance

mechanism. Instead of relying solely on a single owner/administrator,

distribute control and decision-making authority among multiple parties or

stakeholders. This approach enhances security, reduces the risk of

malicious actions by a single entity, and prevents single points of failure.

Resolution: The BlastUP team mitigated the issue with the following statement;

All roles will be set to a multisignature contract, thus decreasing

risk on exploit.

21

F-2024-1543 - Lack of Boundary Checks - Low

Description: The Launchpad contract lacks a boundary check on the tgePercent

variable when it is set. This variable represents the percentage of tokens

available for immediate claim at the Token Generation Event �TGE�. The

absence of a validation check to ensure tgePercent does not exceed

100% can lead to logical errors in the getClaimableAmount() function,

potentially causing incorrect calculations.

The getClaimableAmount() function calculates the number of tokens a

user can claim based on their initial allocation and the percentages set for

immediate availability at TGE and subsequent vesting. The critical section

of code is:

function getClaimableAmount(address token, address user) public view

returns (uint256) {

uint256 tgeAmount = users[token][user].boughtAmount * placedTokens[t

oken].tgePercent / 100;

…

}

Here, tgePercent should logically represent a percentage (i.e., a value

between 0 and 100 inclusive), but the contract does not enforce this

range when tgePercent is set.

Additionally, the YieldStaking contract allows the owner to set

minTimeToWithdraw, which defines the minimum time a user must wait

before withdrawing their staked assets. Currently, there is no upper

boundary check on this value, which might enable the owner to set an

unreasonably high withdrawal time, effectively locking users' assets

indefinitely.

function setMinTimeToWithdraw(uint256 _minTimeToWithdraw) external o

nlyOwner {

minTimeToWithdraw = _minTimeToWithdraw;

}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 2/5

Exploitability: Independent

22

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/d757c2db-d277-428b-a2cf-3110e27f824e

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 2

Exploitability �0�2�� 1

Complexity �0�2�� 0

Final Score: 1.7 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation:
�� Implement a validation check within the function or process that sets

tgePercent to ensure it does not exceed 100%

�� Implement a sensible upper limit for minTimeToWithdraw.

Resolution: The BlastUP team acknowledged the issue with the following statement;

Admins are assumed to be trusted and there will always be

possibility that admins enter unexpected values even if we have

more validation checks. Thus, we prefer to keep this as is without

introducing additional complexity.

23

F-2024-1545 - Missing Validation of Tier Hierarchy - Low

Description: The Launchpad smart contract lacks validations in the functions

setMinAmountsForTiers() and setWeightsForTiers(), which allow

setting the tier weights and minimum amounts. Specifically, the contract

does not enforce that higher tiers (e.g., SILVER, GOLD� must have higher

weight and minimum amount requirements compared to lower tiers (e.g.,

BRONZE�. This absence of hierarchical validation could lead to a tier

configuration where a higher tier has less influence or requirements than a

lower tier, contradicting the intended progression and incentives of a

tiered system.

Affected Code:

function setMinAmountsForTiers(uint256[6] memory amounts) external o

nlyOperatorOrOwner {

minAmountForTier[UserTiers.BRONZE] = amounts[0];

minAmountForTier[UserTiers.SILVER] = amounts[1];

minAmountForTier[UserTiers.GOLD] = amounts[2];

minAmountForTier[UserTiers.TITANIUM] = amounts[3];

minAmountForTier[UserTiers.PLATINUM] = amounts[4];

minAmountForTier[UserTiers.DIAMOND] = amounts[5];

}

function setWeightsForTiers(uint256[6] memory weights) external only

OperatorOrOwner {

weightForTier[UserTiers.BRONZE] = weights[0];

weightForTier[UserTiers.SILVER] = weights[1];

weightForTier[UserTiers.GOLD] = weights[2];

weightForTier[UserTiers.TITANIUM] = weights[3];

weightForTier[UserTiers.PLATINUM] = weights[4];

weightForTier[UserTiers.DIAMOND] = weights[5];

}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �0�2�� 2

24

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/64cf6ea6-381a-4db2-82a3-24bc3ff3e692

Complexity �0�2�� 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: Implement validation logic in setMinAmountsForTiers and

setWeightsForTiers to ensure that each tier's requirements and

weights do not decrease as tiers progress. The validation should enforce

that each tier's minimum amount and weight are greater than or equal to

the previous tier

Resolution: The BlastUP team acknowledged the issue with the following statement;

Admins are assumed to be trusted and there will always be

possibility that admins enter unexpected values even if we have

more validation checks. Thus, we prefer to keep this as is without

introducing additional complexity..

25

F-2024-1735 - Privileged Functions Susceptible to Front-Running -

Low

Description: The Launchpad and YieldStaking smart contracts contain functions

(setMinAmountsForTiers(), setWeightsForTiers(),

setMinTimeToWithdraw(), setMinUSDBStakeValue(),

setRegistrationStart(), setPublicSaleStart(),

setFCFSSaleStart(), setTgeStart(), setVestingStart()) that are

vulnerable to front-running. This occurs because these functions modify

important contract state variables that affect the outcome of other

contract functions. If these setter functions are front-run by other

transactions, users can take advantage of older values before the new

settings take effect, leading to potential abuses.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 3

Impact �1�5�� 3

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 2.4082246852806923 [Low]

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: Implement measures to ensure that the contract is pausable and only

execute these functions when the contract is in a paused state.

Resolution: The BlastUP team acknowledged the issue with the following statement;

26

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/34586ab2-74e6-4632-8007-5bc2d750f031

Requiring two-step pause process for all admin functionality

execution will add more complexity without much

benefit/decrease of risk.

27

F-2024-1738 - `decimals()` is not a part of the `ERC-20` standard -

Low

Description: The decimals() function is not a part of the ERC�20 standard, and was

added later as an optional extension. As such, some valid ERC20 tokens

do not support this interface, so it is unsafe to blindly cast all tokens to

this interface, and then call this function.

Affected code:

./contracts/Launchpad.sol

require(_placedToken.tokenDecimals == IERC20Metadata(token).decimals

(), "BlastUP: invalid decimals");

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 4/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 4

Exploitability �0�2�� 2

Complexity �0�2�� 0

Final Score: 2.1 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: When working with ERC�20 tokens in your Solidity code, be aware that the

decimals() function is not a part of the ERC�20 standard and is

considered an optional extension. Not all valid ERC�20 tokens implement

this interface, so avoid blindly casting all tokens to this interface and

calling the decimals() function. Instead, check the token's

28

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/21761b00-cc34-4e85-be2f-2038543957ff
https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/IERC20Metadata.sol

documentation or contract to determine whether it supports this

extension before using it.

Resolution: The BlastUP team acknowledged the issue with the following statement;

There is no plans for supporting tokens which do not have

decimals() method. Every external token will be reviewed by

admins and can only be added by them through placeTokens()

function

29

F-2024-2040 - Inappropriate Handling of Decimal Precision for Tier

Minimum Amounts - Low

Description: The smart contract specifies hardcoded minimum amounts for different

user tiers without considering the token's decimal precision. This leads to

a significant issue where the token used in BLPStaking, which has 18

decimals, does not correspond correctly with the tier minimum

requirements set in the Launchpad contract. As per the current setup,

anyone staking merely 1 token �1 � 10^18 in terms of smallest units) could

potentially qualify for the highest tier �Diamond), due to a

misunderstanding of token decimals in tier minimum definitions.

Affected Code:

function initialize(address _owner, address _signer, address _operat

or, address _points, address _pointsOperator) public initializer {

...

minAmountForTier[Types.UserTiers.BRONZE] = 2_000;

minAmountForTier[Types.UserTiers.SILVER] = 5_000;

minAmountForTier[Types.UserTiers.GOLD] = 10_000;

minAmountForTier[Types.UserTiers.TITANIUM] = 20_000;

minAmountForTier[Types.UserTiers.PLATINUM] = 50_000;

minAmountForTier[Types.UserTiers.DIAMOND] = 150_000;

...

}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

LaunchpadV2.sol [https://github.com/blastupio/launchpad-contracts/]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Likelihood �1�5�� 3

Impact �1�5�� 2

Exploitability �0�2�� 0

Complexity �0�2�� 0

Final Score: 2.5 (Low)

Hacken Calculator Version: 0.6

30

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/b781cb5d-6773-4710-b38c-ccdcacdbcf5c

Severity: Low

Recommendations

Remediation: The tier minimum amounts should be adjusted according to the token's

decimals.

Resolution: The BlastUP team fixed the issue in commit 2e05419 by implementing

10^18 precision for minimum tier amounts.

31

F-2024-2043 - Fee-On-Transfer Token Handling Flaw - Low

Description: The Launchpad smart contract interacts with ERC�20 tokens in a manner

that assumes the transfer methods safeTransferFrom() move exactly

the amount specified by the caller. This assumption can lead to issues

when interacting with fee-on-transfer tokens, where a portion of the

tokens transferred is deducted as a fee. The function

claimRemainders() in the contract attempts to transfer the total

remaining tokens (volume) back to the contract owner after a sale. If the

token being handled deducts a fee on transfer, the actual amount sent will

be less than volume, potentially causing the transfer to revert if the

contract's balance is less than the specified volume.

One way to address this problem is to measure the balance before and

after the transfer, and use the difference as the amount, rather than the

stated amount.

Affected code:

./contracts/LaunchpadV2.sol

246: IERC20(token).safeTransferFrom(msg.sender, address(this), sumVo

lume);

318: IERC20(paymentContract).safeTransferFrom(msg.sender, placedToke

n.addressForCollected, volume);

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 4/5

Likelihood: 2/5

Exploitability: Semi-Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 4

Exploitability �0�2�� 1

Complexity �0�2�� 0

Final Score: 2.4(Low)

Hacken Calculator Version: 0.6

Severity: Low

32

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/b34e7db3-dac4-434e-819f-2ed6b8f2df2e

Recommendations

Remediation: To mitigate potential vulnerabilities and ensure accurate accounting with

fee-on-transfer tokens, modify your contract's token transfer logic to

measure the recipient's balance before and after the transfer. Use this

observed difference as the actual transferred amount for any further logic

or calculations. For example:

function transferTokenAndPerformAction(address token, address from,

address to, uint256 amount) public {

uint256 balanceBefore = IERC20(token).balanceOf(to);

// Perform the token transfer

IERC20(token).transferFrom(from, to, amount);

uint256 balanceAfter = IERC20(token).balanceOf(to);

uint256 actualReceived = balanceAfter - balanceBefore;

// Proceed with logic using actualReceived instead of the initial am

ount

require(actualReceived >= minimumRequiredAmount, "Received amount is

less than required");

// Further logic here

}

Resolution: The BlastUP team acknowledged the issue with the following statement;

There are no plans to support tokens that have a fee on transfer.

Every external token will be reviewed by admins and can only be

added by them through the placeTokens() function

33

F-2024-1609 - Inconsistency in Token Allocation Post-Claim - Info

Description: The claimRemainders() function within the Launchpad contract is

designed to transfer any unclaimed tokens to the DAO's address post-

sale. However, this function sets the placedTokens[token].volume to

zero without appropriately resetting the

placedTokens[token].initialVolumeForHighTiers or

placedTokens[token].initialVolumeForLowTiers.

function claimRemainders(uint256 id) external onlyOperatorOrOwner {

...

uint256 volume = placedToken.volume;

placedToken.volume = 0;

placedToken.volumeForYieldStakers = 0;

...

}

This oversight leads to inconsistent behavior in the

userAllowedAllocation() function, particularly affecting users in

higher tiers (e.g., Titanium or above), who will see their potential token

allocations drop to zero, whereas users in lower tiers may continue to

receive allocations based on unchanged initial volumes.

function userAllowedAllocation(uint256 id, address user) public view

returns (uint256) {

if (!users[id][user].registered) return 0;

if (getStatus(id) == Types.SaleStatus.PUBLIC_SALE) {

Types.UserTiers tier = users[id][user].tier;

uint256 weight = weightForTier[tier];

uint256 boughtAmount = users[id][user].boughtPublicSale;

if (users[id][user].tier < Types.UserTiers.TITANIUM) {

return weight * placedTokens[id].initialVolumeForLowTiers / placedTo

kens[id].lowTiersWeightsSum

- boughtAmount;

} else {

return weight * placedTokens[id].initialVolumeForHighTiers / placedT

okens[id].highTiersWeightsSum

- boughtAmount;

}

} else if (users[id][user].tier >= Types.UserTiers.TITANIUM) {

return placedTokens[id].volume;

} else {

return 0;

}

}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 2/5

34

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/8c80db05-b514-455b-b30d-1c302a5c841d

Exploitability: Semi-Dependent

Complexity: Simple

Likelihood �1�5�� 2

Impact �1�5�� 2

Exploitability �0�2�� 1

Complexity �0�2�� 1

Final Score: 1.6 �Informational)

Hacken Calculator Version: 0.6

Severity: Info

Recommendations

Remediation: To resolve this inconsistency, ensure that all related volume parameters

are reset or appropriately adjusted when claimRemainders() is

executed.

35

Observation Details

F-2024-1732 - Missing Events - Info

Description: Events for critical state changes should be emitted for tracking actions

off-chain.

It was observed that events are missing in the following functions:

setSigner()

setOperator()

setRegistrationStart()

setRegistrationEnd()

setPublicSaleStart()

setFCFSSaleStart()

setSaleEnd()

setTgeStart()

setVestingStart()

setMinTimeToWithdraw()

setMinUSDBStakeValue()

Events are crucial for tracking changes on the blockchain, especially for

actions that alter significant contract states or permissions. The absence

of events in these functions means that external entities, such as user

interfaces or off-chain monitoring systems, cannot effectively track these

important changes.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Recommendations

Remediation: Consider implementing and emitting events for the necessary functions.

36

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/d6d024d9-6e03-4999-a059-09d668d7bc04

F-2024-1733 - Use `Ownable2Step` rather than `Ownable - Info

Description: Ownable2Step and Ownable2StepUpgradeable prevent the contract

ownership from mistakenly being transferred to an address that cannot

handle it (e.g. due to a typo in the address), by requiring that the recipient

of the owner permissions actively accept via a contract call of its own.

contract YieldStaking is OwnableUpgradeable{...}

contract Launchpad is OwnableUpgradeable, ILaunchpad {...}

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Recommendations

Remediation: Consider using Ownable2Step or Ownable2StepUpgradeable from

OpenZeppelin Contracts to enhance the security of your contract

ownership management. These contracts prevent the accidental transfer

of ownership to an address that cannot handle it, such as due to a typo,

by requiring the recipient of owner permissions to actively accept

ownership via a contract call. This two-step ownership transfer process

adds an additional layer of security to your contract's ownership

management.

37

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/f69c2a02-9a19-4c37-a060-17eb4efd5890
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3d7a93876a2e5e1d7fe29b5a0e96e222afdc4cfa/contracts/access/Ownable2Step.sol#L31-L56
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/access/Ownable2StepUpgradeable.sol#L47-L63

F-2024-1734 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address.

The "Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

Missing checks were observed in the following functions of the

Launchpad, LaunchpadV2 and YieldStaking contracts:

./Launchpad.sol: constructor()

./Launchpad.sol: initialize()

./Launchpad.sol: setSigner()

./Launchpad.sol: setOperator()

./Launchpad.sol: setRegistrationStart()

./Launchpad.sol: setRegistrationEnd()

./Launchpad.sol: setPublicSaleStart()

./Launchpad.sol: setFCFSSaleStart()

./Launchpad.sol: setSaleEnd()

./Launchpad.sol: setTgeStart()

./Launchpad.sol: setVestingStart()

./Launchpad.sol: placeTokens()

./LaunchpadV2.sol: constructor()

./LaunchpadV2.sol: initialize()

./YieldStaking.sol: constructor()

./YieldStaking.sol: initialize()

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

LaunchpadV2.sol [https://github.com/blastupio/launchpad-contracts/]

Status: Accepted

Recommendations

38

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/19161c85-b73c-4ff1-a453-8f9febc187a4

Remediation: Implement zero address validation for the given parameters. This can be

achieved by adding require statements that ensure address parameters

are not the zero address.

39

F-2024-1737 - Floating pragma - Info

Description: The project uses floating pragma ^0.8.25.

This may result in the contracts being deployed using the wrong pragma

version, which is different from the one they were tested with. For

example, they might be deployed using an outdated pragma version which

may include bugs that affect the system negatively.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

LaunchpadV2.sol [https://github.com/blastupio/launchpad-contracts/]

Status: Accepted

Recommendations

Remediation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

40

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/64f02c70-bcdf-455e-8006-9011c749198f
https://github.com/ethereum/solidity/releases

F-2024-1739 - Redundant Error Declaration - Info

Description: The Launchpad contract defines the error InvalidSaleStatus, but it is

not utilized in its respective implementations. This suggests a possible

oversight or inconsistency in the contract designs.

The redundancy in error declarations can lead to unnecessary gas

consumption during deployment and may impact the overall code quality.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

Status: Fixed

Recommendations

Remediation: Remove the redundant error.

Resolution: The BlastUP team fixed the issue in commit fb4f1a4 by removing the

redundant error.

41

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/344dfa5c-d961-4303-bb91-d3309ea24c45

F-2024-1742 - Lack of Zero Amount Check - Info

Description: In the stake() , claimReward() , withdraw() functions of a

YieldStaking contract, there is a notable absence of checks to ensure

that the amount of token being staked is greater than zero. This oversight

can lead to unnecessary execution of these functions when the amount is

zero, potentially causing redundant Gas expenditure and affecting the

contract's efficiency.

Assets:
YieldStaking.sol [https://github.com/blastupio/launchpad-contracts]

Status: Accepted

Recommendations

Remediation: It is recommended to add a check for zero amounts in mentioned

functions. This will prevent the functions from executing when the staking

amount is zero.

42

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/0e0a37d5-48a2-41db-b8ef-84aca1a031ef

F-2024-2027 - Unrestricted Tier Downgrade in Registration

Functions - Info

Description: The registration functions register(), registerWithApprove(),

registerV2(), registerV2WithApprove() in the LaunchpadV2 and

Launchpad contracts allows users to register themselves by specifying

their tier, which is provided directly by the user during the function call.

Currently, there is no validation mechanism to ensure that the tier value

submitted by the user corresponds appropriately to their actual eligibility

or previous tier level. This oversight can lead to situations where a user

with a higher tier might accidentally register themselves under a lower tier,

with no possibility of correcting this error since the contract does not

support tier modification or unregistering once registered.

Assets:
Launchpad.sol [https://github.com/blastupio/launchpad-contracts]

LaunchpadV2.sol [https://github.com/blastupio/launchpad-contracts/]

Status: Accepted

Recommendations

Remediation: Implement tier validation within the registration functions to verify that the

tier parameter provided by the user does not conflict with their actual tier.

43

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/957ca16d-df7f-4409-beff-e89d525b143e

F-2024-2029 - Redundant import - Info

Description: The use of unnecessary imports will increase the Gas consumption of the

code. Thus they should be removed.

Assets:
LaunchpadV2.sol [https://github.com/blastupio/launchpad-contracts/]

Status: Fixed

Recommendations

Remediation: Remove the “./interfaces/IChainlinkOracle.sol” import.

Resolution: The BlastUP team fixed the issue in commit b3020b0 by removing the

redundant import.

44

https://portal.hacken.io/App/Projects/Details/0cc095f7-1c5f-4fd4-8912-7dc9b3e764fc/Finding/0e9ba28c-24e0-4552-9c93-83dda1ff6ed2

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

45

Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

46

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/blastupio/launchpad-contracts/tree/master

Commit cb6957dde5944e6cfd885ceed8539140dce51a98

Whitepaper N/A

Requirements https://docs.blastup.io/blastup-docs

Technical Requirements Confidential

Contracts in Scope

./contracts/Launchpad.sol

./contracts/YieldStaking.sol

./contracts/LaunchpadV2.sol

47

https://github.com/blastupio/launchpad-contracts/tree/master
https://docs.blastup.io/blastup-docs

