

Customer: SOAR

Date: January 27th, 2021

SMART CONTRACT

CODE REVIEW AND

SECURITY ANALYSIS

REPORT

This document may contain confidential information about IT systems and the

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the customer.

Document

Name Smart Contract Code Review and Security Analysis Report for SOAR.

Type ERC-20 token with specific functionality

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification,

Manual Review

Approved by Andrew Matiukhin | CTO and co-founder Hacken

Etherscan link https://etherscan.io/address/0xbae5f2d8a1299e5c4963eaff3312399253f27ccb

Timeline 21ST
 JAN 2021 – 27TH

 JAN 2021

Changelog 27TH
 JAN 2021 - Initial Audit

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary .. 5

Severity Definitions .. 6

AS-IS overview... 7

Conclusion .. 21

Disclaimers ... 22

Introduction

Hacken OÜ (Consultant) was contracted by SOAR (Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of Customer`s smart contract and its code

review conducted between January 21st, 2021 – January 27th, 2021.

Scope

The scope of the project is main net smart contract that can be found on Etherscan:
https://etherscan.io/address/0xbae5f2d8a1299e5c4963eaff3312399253f27ccb#code

We have scanned this smart contract for commonly known and more specific

vulnerabilities. List of the commonly known vulnerabilities that are considered:
Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

https://etherscan.io/address/0xbae5f2d8a1299e5c4963eaff3312399253f27ccb#code

Executive Summary

According to the assessment, the Customer’s smart contracts are secure.

Our team performed an analysis of code functionality, manual audit, and

automated checks with Mythril and Slither. All issues found during automated

analysis were manually reviewed and important vulnerabilities are presented in

the Audit overview section. A general overview is presented in AS-IS section and

all found issues can be found in the Audit overview section.

Security engineers found 4 low severity issues during the audit. Overall code

quality is good.

Low severity issues do not have major security impact; risks may be accepted by

Customer not to redeploy the contract.

Graph 1. The distribution of vulnerabilities.

Low
80%

Lowest
20%

Low Lowest

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can

lead to assets lose or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also

have significant impact on smart contract execution, e.g. public access

to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they can’t

lead to assets lose or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused

etc. code snippets, that can’t have significant impact on execution

Lowest / Code

Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info

statements can’t affect smart contract execution and can be

ignored.

AS-IS overview

SOAR smart contracts

SOAR smart contract consists of contract Context, interface IERC20, library

SafeMath, library Address, contract Ownable, contract SOAR.

Context

Description

Context is a standard OpenZeppelin smart contract for information about

execution context.

IERC20

Description

IERC20 is a standard interface for interactions with ERC20 tokens.

SafeMath

Description

SafeMath is a standard OpenZeppelin library for mathematical operations to

prevent overflows.

Address

Description

Address is a standard OpenZeppelin library with different functions for address.

Ownable

Description

Ownable is a standard OpenZeppelin smart contract for basic access control with

an owner role.

SOAR

Description

SOAR is a smart contract for ERC20 token with custom functions.

Imports

SOAR is audited on-chain, thus, all imports are described above.

Inheritance

SOAR contract is Context, IERC20, Ownable.

Usages

SOAR contract has following usages:

● using SafeMath for uint256;

● using Address for address;

Structs

SOAR contract has no custom structs.

Enums

SOAR contract has no custom enums.

Events

SOAR contract has no custom events.

Modifiers

SOAR contract has no custom modifiers.

Fields

SOAR contract has following parameters:

● mapping (address => uint256) private _rOwned;

● mapping (address => uint256) private _tOwned;

● mapping (address => mapping (address => uint256)) private _allowances;

● mapping (address => bool) private _isExcluded;

● address[] private _excluded;

● uint256 private constant MAX = ~uint256(0);

● uint256 private constant _tTotal = 10 * 10**6 * 10**9;

● uint256 private _rTotal = (MAX - (MAX % _tTotal));

● uint256 private _tFeeTotal;

● string private _name = 'SOAR.FI';

● string private _symbol = 'SOAR';

● uint8 private _decimals = 9;

● uint256 private startTime;

Functions

SOAR has following functions:

● constructor
Description

initializes contract

Visibility

public

Input parameters

None

Constraints

None

Events emit

● emit Transfer(address(0), _msgSender(), _tTotal);

Output

None
● name

Description

returns name

Visibility

public view

Input parameters

None

Constraints

None

Events emit

Name

Output

_name

● symbol
Description

returns symbol

Visibility

public view

Input parameters

None

Constraints

None

Events emit

Name

Output

_symbol

● decimals
Description

returns decimals

Visibility

public view

Input parameters

None

Constraints

None

Events emit

Name

Output

_decimals

● totalSupply
Description

returns totalSupply

Visibility

public view

Input parameters

None

Constraints

None

Events emit

Name

Output

_tTotal

● balanceOf
Description

returns balance for address

Visibility

public view

Input parameters

None

Constraints

None

Events emit

None

Output

tokenFromReflection(_rOwned[account]);

● transfer
Description

calls internal token transfer

Visibility

public

Input parameters

● address recipient

● uint256 amount

Constraints

None

Events emit

None

Output

true

● allowance
Description

returns allowance for owner and spender

Visibility

public view

Input parameters

● address owner

● address spender

Constraints

None

Events emit

Name

Output

_allowances[owner][spender]

● approve
Description

calls internal approve

Visibility

public

Input parameters

● address spender

● uint256 amount

Constraints

None

Events emit

None

Output

true

● transferFrom
Description

calls internal token transfer and approve

Visibility

public

Input parameters

● address sender

● address recipient

● uint256 amount

Constraints

None

Events emit

None

Output

true

● increaseAllowance

Description

calls internal approve to increase allowance

Visibility

public

Input parameters

● address spender

● uint256 addedValue

Constraints

None

Events emit

None

Output

true

● decreaseAllowance
Description

calls internal approve to decrease allowance

Visibility

public

Input parameters

● address spender

● uint256 subtractedValue

Constraints

None

Events emit

None

Output

true

● isExcluded
Description

checks whether address is excluded

Visibility

public view

Input parameters

● address account

Constraints

None

Events emit

None

Output

_isExcluded[account]

● totalFees
Description

returns total fees

Visibility

public view

Input parameters

None

Constraints

None

Events emit

None

Output

_tFeeTotal

● reflect
Description

adds amount to fee

Visibility

public

Input parameters

None

Constraints

None

Events emit

None

Output

None

● reflectionFromToken
Description

returns reflection amount from token

Visibility

public view

Input parameters

● uint256 tAmount

● bool deductTransferFee

Constraints

None

Events emit

None

Output

rAmount

rTransferAmount

● tokenFromReflection
Description

returns token amount from reflection

Visibility

public view

Input parameters

● uint256 rAmount

Constraints

None

Events emit

None

Output

rAmount.div(currentRate)

● excludeAccount
Description

adds address to excluded

Visibility

external

Input parameters

● address account

Constraints

● onlyOwner

Events emit

None

Output

None

● includeAccount
Description

removes address from excluded

Visibility

external

Input parameters

● address account

Constraints

● onlyOwner

Events emit

None

Output

None

● _approve
Description

approves spender amount for the owner

Visibility

private

Input parameters

● address owner

● address spender

● uint256 amount

Constraints

None

Events emit

● emit Approval(owner, spender, amount);

Output

None

● _transfer
Description

transfers tokens from one account to another

Visibility

private

Input parameters

● address sender

● address recipient

● uint256 amount

Constraints

None

Events emit

None

Output

None

● _transferStandard
Description

performs transfer from not excluded to not excluded

Visibility

private

Input parameters

● address sender

● address recipient

● uint256 tAmount

Constraints

None

Events emit

● emit Transfer(sender, recipient, tTransferAmount);

Output

None

● _transferToExcluded
Description

performs transfer from not excluded to excluded

Visibility

private

Input parameters

● address sender

● address recipient

● uint256 tAmount

Constraints

None

Events emit

● emit Transfer(sender, recipient, tTransferAmount);

Output

None

● _transferBothExcluded
Description

performs transfer from excluded to excluded

Visibility

private

Input parameters

● address sender

● address recipient

● uint256 tAmount

Constraints

None

Events emit

● emit Transfer(sender, recipient, tTransferAmount);

Output

None

● _transferFromExcluded
Description

performs transfer from excluded to not excluded

Visibility

private

Input parameters

● address sender

● address recipient

● uint256 tAmount

Constraints

None

Events emit

● emit Transfer(sender, recipient, tTransferAmount);

Output

None

● _reflectFee
Description

reflects fee to token

Visibility

private

Input parameters

● uint256 rFee

● uint256 tFee

Constraints

None

Events emit

None

Output

None

● _getValues
Description

returns transfer amount and fee values

Visibility

private view

Input parameters

● uint256 tAmount

Constraints

None

Events emit

None

Output

(rAmount, rTransferAmount, rFee, tTransferAmount, tFee)

● _getTValues
Description

returns token transfer amount and fee

Visibility

private pure

Input parameters

● uint256 tAmount

Constraints

None

Events emit

None

Output

(tTransferAmount, tFee)

● _getRValues
Description

returns reflection transfer amount and fee

Visibility

private view

Input parameters

● uint256 tAmount

Constraints

None

Events emit

None

Output

(rAmount, rTransferAmount, rFee)

● _getRate
Description

returns current reflection rate

Visibility

private view

Input parameters

None

Constraints

None

Events emit

None

Output

rSupply.div(tSupply)

● _getCurrentSupply
Description

returns current token and reflection supply

Visibility

private view

Input parameters

None

Constraints

None

Events emit

None

Output

(rSupply, tSupply)

Audit overview

 Critical

No critical issues were found.

 High

No high issues were found.

 Medium

No medium issues were found.

 Low

1. Solidity version is not locked. It’s recommended to lock solidity pragma to

a specific stable version.

2. Code is not covered with in-code documentations; it’s recommended to

add function description for all functions.

3. No unit tests were developed for the project. It’s recommended to have

100% test coverage for code.

4. It’s highly recommended to have more events and emits for crucial

functionality, for example, adding/removing to excluded, fee reflection etc.

 Lowest / Code style / Best Practice

5. Default condition is unreachable for all ifs in transfer. It’s recommended

to have 3 if..else checks and the default should be standard transfer. It may

potentially save some gas.

Conclusion

Smart contracts within the scope was manually reviewed and analyzed with static

analysis tools. For the contract high level description of functionality was

presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security engineers found 4 low severity issues during the audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the

best industry practices at the date of this report, in relation to cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report, (Source Code); the Source Code compilation, deployment

and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also cannot

be considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have done

our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only - we recommend proceeding with

several independent audits and a public bug bounty program to ensure security of

smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The platform,

its programming language, and other software related to the smart contract can

have own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee

explicit security of the audited smart contracts.

