

Customer: Populous

Date: December 31rd, 2020

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Populous.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Multiple purposes contracts

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/bitpopulous/defi_audits/

Commit 3944B72830AA1F514ECBEEFCD11EDBF3EC377C53

Deployed
contract

Timeline 21 DEC 2020 – 31 DEC 2020

Changelog 30 DEC 2020 – INITIAL AUDIT

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 6

AS-IS overview .. 7

Conclusion .. 29

Disclaimers .. 30

Introduction

Hacken OÜ (Consultant) was contracted by Populous (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code

review conducted between December 21st, 2020 – December 31st, 2020.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
Commit
Files:
 /reward/RewardPoolAddressManager.sol
 /reward/RewardPool.sol

/lendingpool/LendingPoolConfigurator.sol
/lendingpool/LendingPoolDataProvider.sol
/lendingpool/LendingPool.sol
/governance/governance/PopulousProtoGovernance.sol
/governance/governance/governance/PopulousPropositionPower.sol
/governance/governance/GovernanceParamsProvider.sol
/governance/governance/AssetVotingWeightProvider.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts has some issues

that should be fixed.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 critical, 2 high, 5 medium, 5 low, and 2 informational
issue during the audit.

Notice: some contracts in the repository are not in the audit scope. They can
be used by or can use contacts from the scope. During the audit we consider
out-of-scope contracts as secure but cannot guaranty that they really are. We
recommend reviewing those contracts before using the system. Due to the
limited scope, we cannot guarantee that the whole system will work properly
all together. We recommend performing the full audit and UAT testing at the
production environment as it can reveal issues which cannot be reproduced
during the audit.

Insecure Poor secured Secured Well-secured

You are

here

Graph 1. The distribution of vulnerabilities after the first review.

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

Medium
36%

Low
36%

Informational
7%

Critical
7%

High
14%

Medium Low Informational Critical High

AS-IS overview

LendingPool.sol

Description

LendingPool is a contract used to provide a loans and flash-loans functionality.

Imports

LendingPool contract has the following imports:

• @openzeppelin/contracts/math/SafeMath.sol

• @openzeppelin/contracts/utils/ReentrancyGuard.sol

• @openzeppelin/contracts/utils/Address.sol

• @openzeppelin/contracts/token/ERC20/IERC20.sol

• ../libraries/openzeppelin-upgradeability/VersionedInitializable.sol

• ../configuration/LendingPoolAddressesProvider.sol

• ../configuration/LendingPoolParametersProvider.sol

• ../tokenization/PToken.sol

• ../libraries/CoreLibrary.sol

• ../libraries/WadRayMath.sol

• ../interfaces/IFeeProvider.sol

• ../flashloan/interfaces/IFlashLoanReceiver.sol

• ./LendingPoolCore.sol

• ./LendingPoolDataProvider.sol

• ./LendingPoolLiquidationManager.sol

• ../libraries/EthAddressLib.sol

• ./LendingPoolConfigurator.sol

• ./DefaultReserveInterestRateStrategy.sol

Inheritance

LendingPool contract is ReentrancyGuard, VersionedInitializable.

Usages

LendingPool contract has following usages:

• SafeMath for uint256.

• WadRayMath for uint256.

• Address for address.

Structs

LendingPool contract has following data structures:

• BorrowLocalVars – used for local computations in the `borrow` function.

• RepayLocalVars – used for local computations in the `repay` function.

Enums

LendingPool contract has no custom enums.

Events

LendingPool contract has following events:

• Deposit – emitted on deposit.

• RedeemUnderlying – mitted during a redeem action.

• Borrow – emitted on borrow.

• Repay – emitted on repay.

• Swap - emitted when a user performs a rate swap.

• ReserveUsedAsCollateralEnabled – emitted when a user enables a reserve
as collateral.

• ReserveUsedAsCollateralDisabled – emitted when a user disables a
reserve as collateral.

• RebalanceStableBorrowRate – emitted when the stable rate of a user gets
rebalanced.

• FlashLoan – emitted when a flashloan is executed.

• OriginationFeeLiquidated – emitted when a borrow fee is liquidated.

• LiquidationCall – emitted when a borrower is liquidated.

Modifiers

LendingPool has the following modifiers:

• onlyOverlyingPToken – functions affected by this modifier can only be
invoked by the PToken contract.

• onlyActiveReserve - functions affected by this modifier can only be
invoked if the reserve is active.

• onlyUnfreezedReserve – functions affected by this modifier can only be
invoked if the reserve is not frozen.

• onlyAmountGreaterThanZero – functions affected by this modifier can
only be invoked if the provided `_amount` input parameter is not zero.

Fields

LendingPool contract has following constants and fields:

• LendingPoolAddressesProvider public addressesProvider

• LendingPoolCore public core

• LendingPoolDataProvider public dataProvider

• LendingPoolParametersProvider public parametersProvider

• IFeeProvider feeProvider

• uint256 public constant UINT_MAX_VALUE = uint256(-1)

• uint256 public constant LENDINGPOOL_REVISION = 0x5

Functions

LendingPool has following public functions:

• initialize
Description
Initializes the contract.
Visibility
public
Input parameters

o LendingPoolAddressesProvider _addressesProvider – the address
of the LendingPoolAddressesProvider registry.

Constraints
o Can only be called once.

Events emit
None
Output
None

• deposit
Description
Deposits the underlying asset into the reserve. A corresponding amount
of the overlying asset (PTokens) is minted.
Visibility
external payable
Input parameters

o address _reserve – the reserve address.
o uint256 _amount – an amount to be deposited.
o uint16 _referralCode – referral code.

Constraints

o onlyActiveReserve modifier.

o onlyUnfreezedReserve modifier.

o onlyAmountGreaterThanZero modifier.

Events emit
Emits the Deposit event.
Output
None

• redeemUnderlying
Description
Redeems the underlying amount of assets requested by `_user`.
Visibility
external
Input parameters

o address _reserve – the reserve address.
o address payable _user – the address of the user performing the

action.
o uint256 _amount – the underlying amount to be redeemed.
o uint256 _PTokenBalanceAfterRedeem – PToken balance after

redeem.
Constraints

o onlyOverlyingPToken modifier.

o onlyActiveReserve modifier.

o onlyAmountGreaterThanZero modifier.

o The `_amount` should be less or equal to

`currentAvailableLiquidity`.

Events emit
Emits the RedeemUnderlying event.
Output
None

• calculateUserReserveCollateralETHInvoicePool
Description
Redeems the underlying amount of assets requested by `_user`.
Visibility
public view
Input parameters

o address _reserve – the reserve address.
o address payable _user – the address of the user performing the

action.
o uint256 _amount – the underlying amount to be redeemed.

o uint256 _PTokenBalanceAfterRedeem – PToken balance after
redeem.

Constraints
o Stable interest rates should be set for reserve to borrow from.

o Only stable rate mode allowed.

o A `userCollateralBalanceETH` should not exceed the

`amountOfCollateralNeededETH`.

Events emit
None
Output

o bool – always true.
o uint256 – userCollateralBalanceETH
o uint256 – amountOfCollateralNeededETH

• borrow
Description
Allows users to borrow a specific `amount` of the reserve underlying

asset, provided that the borrower already deposited enough collateral.
Visibility
external
Input parameters

o address _reserve – the reserve address.
o uint256 _amount – an amount to be borrowed.
o uint256 _interestRateMode – the interest rate mode at which a

user wants to borrow.
o uint16 _referralCode – a referral code.

Constraints

o onlyActiveReserve modifier.

o onlyUnfreezedReserve modifier.

o onlyAmountGreaterThanZero modifier.

o The `_amount` should be less or equal to

`currentAvailableLiquidity`.

o Reserve should be enabled for borrowing.

o Only STABLE interest rate mode is allowed.

o The `_amount` should not exceed an availableLiquidity.

o The borrower health factor should not be below threshold.

o The borrow fee should be greater than 0.

o The borrower should have enough collateral balance to take a

loan.

o The borrower should be allowed to borrow at stable interest rate

mode.

o The `_amount` should not exceed a `maxLoanSizeStable`

Events emit
Emits the Borrow event.
Output

 None

• repay
Description
Repays a borrow on the specific reserve, for the specified amount (or for

the whole amount, if uint256(-1) is specified).
Visibility
external
Input parameters

o address _reserve – the reserve address.
o uint256 _amount – an amount to repay.
o address payable _onBehalfOf – address for wich msg.sender is

repaying.
Constraints

o onlyActiveReserve modifier.

o onlyAmountGreaterThanZero modifier.

o The user should have an active borrow.

o If a msg.sender is repaying a borrow for another address, an

`_amount` should be an exact sum and cannot be max uint256

value.

o msg.value should be equal to `_value` if repay is in ETH.

Events emit
Emits the Repay event.
Output

 None

• swapBorrowRateMode
Description
Used to swap between stable and variable borrow rate modes.
Visibility
external
Input parameters

o address _reserve – the reserve address.
Constraints

o onlyActiveReserve modifier.

o onlyUnfreezedReserve modifier.

o msg.sender should have an active borrow.

o msg.sender should be allowed to borrow at stable mode if he

wants to change it to the variable mode.

Events emit
Emits the Swap event.
Output

 None

• rebalanceStableBorrowRate
Description
Rebalances the stable interest rate of a user if current liquidity rate > user

stable rate.
Visibility
external
Input parameters

o address _reserve – the reserve address.
o address _user – an address of the user to be rebalanced.

Constraints
o onlyActiveReserve modifier.

o `_user` should have an active borrow.

o `_user` should have a variable rate mode.

Events emit
Emits the RebalanceStableBorrowRate event.
Output

 None

• setUserUseReserveAsCollateral
Description
Allows depositors to enable or disable a specific deposit as collateral.
Visibility
external
Input parameters

o address _reserve – the reserve address.
o bool _useAsCollateral – true if a user wants to use the deposit as

collateral, false otherwise.
Constraints

o onlyActiveReserve modifier.

o onlyUnfreezedReserve modifier.

o msg.sender should have deposited liquidity

o Cannot be disabled if already being used as collateral.

Events emit
Emits ReserveUsedAsCollateralEnabled or
ReserveUsedAsCollateralDisabled events.
Output

 None

• liquidationCall
Description
A proxy function used to liquidate an undercollateralized position.

• flashLoan
Description
Allows smartcontracts to access the liquidity of the pool within one

transaction, as long as the amount taken plus a fee is returned.
Visibility
external
Input parameters

o address _receiver – the loan receiver.
o address _reserve – the reserve address.
o uint256 _amount – the loan amount.
o bytes memory _params – params to be passed to the receiver.

Constraints
o onlyActiveReserve modifier.

o onlyAmountGreaterThanZero modifier.

o `_amount` should not exceed an available liquidity.

o _receiver should be a contract that implements the
IFlashLoanReceiver interface.

o The requested amount should be big enough so that fees will be
greater than 0.

o In the end of transaction, the contract balance should be equal to
the initial balance plus fees.

Events emit
Emits the FlashLoan event.

• getReserveConfigurationData, getReserveData, getUserAccountData,
getUserReserveData, getReserves
Description
Simple view functions.

LendingPoolConfigurator.sol

Description

LendingPoolConfigurator allows lending pool manager to configure lending pool

parametres. Contains only simple protected setter functions ang getters.

LendingPoolDataProvider.sol

Description

LendingPoolDataProvider contains only view functions that allows to receive all
the necessary information about the Lending Pool.

AssetVotingWeightProvider.sol

Description

AssetVotingWeightProvider is a contract used to register whitelisted assets with
its voting weight per asset. Only owner can change voting weights.

GovernanceParamsProvider.sol

Description

GovernanceParamsProvider is a contract used to store parameters of the

governance contract. Only owner can change parameters.

PopulousPropositionPower.sol

Description

PopulousPropositionPower is an Asset to control the permissions on the actions
in PopulousProtoGovernance.

PopulousProtoGovernance.sol

Description

PopulousProtoGovernance provides voting functionality.

Imports

PopulousProtoGovernance contract has the following imports:

• @openzeppelin/contracts/math/SafeMath.sol

• @openzeppelin/contracts/token/ERC20/IERC20.sol

• @openzeppelin/contracts/cryptography/ECDSA.sol

• ../interfaces/IGovernanceParamsProvider.sol

• ../interfaces/IAssetVotingWeightProvider.sol

• ../interfaces/IProposalExecutor.sol

• ../interfaces/IPopulousProtoGovernance.sol

Inheritance

PopulousProtoGovernance contract is IPopulousProtoGovernance.

Usages

PopulousProtoGovernance contract has following usages:

• SafeMath for uint256

• ECDSA for bytes32

Structs

PopulousProtoGovernance contract has following data structures:

• Voter – used to store vote result.

• Proposal – used to store a proposal info.

Enums

PopulousProtoGovernance contract has following enums:

• ProposalStatus {Initializing, Voting, Validating, Executed} – stores
proposal statuses.

Events

PopulousProtoGovernance contract has following events:

• ProposalCreated – emitted when a new proposal is created.

• StatusChangeToVoting – emitted when a proposal status changes to
Voting.

• StatusChangeToValidating – emitted when a proposal status changes to
Validating.

• StatusChangeToExecuted – emitted when a proposal status changes to
Executed.

• VoteEmitted – emitted on a new vote.

• VoteCancelled – emitted when a vote is cancelled.

• YesWins – emitted when a proposal wins with “Yes”.

• NoWins – emitted when a proposal wins with “No”.

• AbstainWins – emitted when a proposal wins with “Abstain”.

Modifiers

PopulousProtoGovernance has no custom modifiers.

Fields

PopulousProtoGovernance contract has following constants and fields:

• uint256 public constant COUNT_CHOICES = 2

• uint256 public constant MIN_THRESHOLD = 13000000 ether

• uint256 public constant MIN_STATUS_DURATION = 1660;

• uint256 public constant MIN_MAXMOVESTOVOTINGALLOWED = 2

• uint256 public constant MAX_MAXMOVESTOVOTINGALLOWED = 6

• IGovernanceParamsProvider private govParamsProvider

• Proposal[] private proposals

Functions

PopulousProtoGovernance has following public functions:

• Fallback function
Description
Forbid transferring ETH to the contract.

• newProposal
Description
Registers a new proposal.
Visibility
external
Input parameters

o bytes32 _proposalType
o bytes32 _ipfsHash
o uint256 _threshold

o address _proposalExecutor
o uint256 _votingBlocksDuration
o uint256 _validatingBlocksDuration
o uint256 _maxMovesToVotingAllowed

Constraints

o A caller should have voting power greater or equal to threshold.

o `_votingBlocksDuration` and `_validatingBlocksDuration` should

be at least MIN_STATUS_DURATION.

o `_maxMovesToVotingAllowed` should be between

MIN_MAXMOVESTOVOTINGALLOWED and

MAX_MAXMOVESTOVOTINGALLOWED.

Events emit
Emits the ProposalCreated event.
Output
None

• verifyParamsConsistencyAndSignature
Description
Verifies the consistency of the action's params and their correct signature.

• verifyNonce
Description
Verifies the nonce of a voter on a proposal.

• validateRelayAction
Description

• submitVoteByVoter
Description
Function called by a voter to submit his vote directly.
Visibility
external
Input parameters

o uint256 _proposalId
o uint256 _vote
o IERC20 _asset

Constraints

o A proposal should be in the Voting status.

o Asset weights of an `_asset` should be greater than 0.

o `_vote` should be 0, 1 or 2.

o The voter balance should be greater than 0.

Events emit

Emits the VoteEmitted event. Also, can emit the
StatusChangeToValidating event.
Output
None

• submitVoteByRelayer
Description
Function called by any address relaying signed vote params from another

wallet.
Visibility
external
Input parameters

o uint256 _proposalId
o uint256 _vote
o IERC20 _asset
o uint256 _nonce
o bytes calldata _signature
o bytes32 _paramsHashByVoter

Constraints
o Signature and _nonce should be valid.

o A proposal should be in the Voting status.

o Asset weights of an `_asset` should be greater than 0.

o `_vote` should be 0, 1 or 2.

o The voter balance should be greater than 0.

Events emit
Emits the VoteEmitted event. Also, can emit the
StatusChangeToValidating event.
Output
None

• cancelVoteByVoter
Description
Revokes a vote in the proposal with `_proposalId`.
Visibility
external
Input parameters

o uint256 _proposalId
Constraints

o A proposal should be in the Voting status.

Events emit
Emits the VoteCancelled event.

Output
None

• cancelVoteByRelayer
Description
Revokes a vote in the proposal with `_proposalId`.
Visibility
external
Input parameters

o uint256 _proposalId
o address _voter
o uint256 _nonce
o bytes calldata _signature
o bytes32 _paramsHashByVoter

Constraints

o Signature and _nonce should be valid.

o A proposal should be in the Voting status.

Events emit
Emits the VoteCancelled event.
Output
None

• tryToMoveToValidating
Description

 Moves a proposal to the Validating status.
Visibility
external
Input parameters

o uint256 _proposalId
Constraints

o A proposal should be in the Voting status.

o All the requirements of moving from Voting to Validating status

should be met.

Events emit
Emits the StatusChangeToValidating event.
Output
None

• challengeVoters
Description

 Called during the Validating period in order to cancel invalid votes where
the voter was trying a double-voting attack.

Visibility
external
Input parameters

o uint256 _proposalId
o address[] calldata _voters

Constraints
o A proposal should be in the Validating status.

Events emit
Can emit StatusChangeToVoting and VoteCancelled events.
Output
None

• resolveProposal
Description

 Resolves a proposal if all requirements are met.
Visibility
external
Input parameters

o uint256 _proposalId
Constraints

o A proposal should be in the Validating status.

o Validating period should pass.

o A proposal should not be expired.

Events emit
Can emit YesWins, NoWins or AbstainWins events. Emits
StatusChangeToExecuted event.
Output
None

• getLimitBlockOfProposal, getLeadingChoice, getProposalBasicData,
getVoterData, getVotesData, getGovParamsProvider
Description

 Simple view functions.

RewardPool.sol

Description

RewardPool is a staking contract.

Imports

RewardPool contract has the following imports:

• ../tokenization/PToken.sol

• ../lendingpool/LendingPoolCore.sol

Inheritance

RewardPool contract is Ownable.

Usages

RewardPool contract has following usages:

• SafeMath for uint256

• SafeERC20 for IERC20

• Address for address

Structs

RewardPool contract has following data structures:

• UserInfo – stores staking amount of a user.

Enums

RewardPool contract has no enums.

Events

RewardPool contract has following events:

• RewardAdded – emitted when a Reward is added.

• Staked – emitted after a successful stake.

• Withdrawn – emitted after withdrawal.

• RewardPaid – emitted after successful reward claim.

• RewardDenied – never emitted.

Modifiers

RewardPool has the following modifiers:

• updateReward – functions affected by this modifier updates reward
balance of a caller.

Fields

RewardPool contract has following constants and fields:

• LendingPoolCore public core

• PToken public pToken

• IERC20 public rewardToken

• uint256 public duration

• uint256 public periodFinish = 0

• uint256 public rewardRate = 0

• uint256 public lastUpdateTime

• uint256 public rewardPerTokenStored

• mapping(address => uint256) public userRewardPerTokenPaid

• mapping(address => uint256) public rewards

• address public exclusiveAddress

• mapping(address => UserInfo) internal userInfo

Functions

RewardPool has following public functions:

• constructor
Description
Initializes the contract.
Visibility
public
Input parameters

o LendingPoolCore _core
o address _rewardToken
o address _reserve
o uint256 _duration

Constraints
None
Events emit
None
Output
None

• lastTimeRewardApplicable, rewardPerToken, getuserinfo, earned
Description
Simple view functions.

• stake
Description
Stakes an `amount` of tokens.
Visibility
public

Input parameters
o uint256 amount

Constraints
o `amount` should be greater than 0.

Events emit
Emits the `Staked` event.
Output
None

• withdraw
Description
Withdraw an `amount` of tokens.
Visibility
public
Input parameters

o uint256 amount
Constraints

o `amount` should be greater than 0.
Events emit
Emits the `Withdrawn` event.
Output
None

• withdraw
Description
Withdraw an `amount` of tokens.
Visibility
public
Input parameters

o uint256 amount
Constraints

o `amount` should be greater than 0.
Events emit
Emits the `Withdrawn` event.
Output
None

• exit
Description
Withdraw all tokens and rewards.
Visibility
public
Input parameters

None
Constraints

o A caller should have active stake.
Events emit
Emits `Withdrawn` and `RewardPaid` events.
Output
None

• pushReward
Description
Withdraw rewards of a `recipient`.
Visibility
public
Input parameters

o address recipient
Constraints

o onlyOwner modifier.
Events emit
Emits the `RewardPaid` event.
Output
None

• getReward
Description
Withdraw rewards of a caller.
Visibility
public
Input parameters

o address recipient
Constraints
None
Events emit
Emits the `RewardPaid` event.
Output
None

• notifyRewardAmount
Description
Withdraw rewards of a caller.
Visibility
external
Input parameters

o uint256 reward

Constraints
o onlyOwner modifier.
o `reward` should not exceed max uint value divided by 10^18.

Events emit
Emits the `RewardAdded` event.
Output
None

RewardPoolAddressManager.sol

Description

RewardPoolAddressManager is a contract used to deploy new RewadPool
contracts. Can be used only by the owner.

Audit overview

 Critical

1. The `PopulousProtoGovernance` contract is not secured from double-
voting. Manual calls of the challengeVoters function with a limited list of
voters is not enough.

We recommend allowing a proposal resolving only after all voters are

validated or to redesign a way votes are collected.

 High

1. The `setReserveDecimals` function of the `LandingPoolConfiguration`
allows to specify a reserve token decimals manually.

We recommend changing this function to `updateReserveDecimals` and

take decimals value directly from a token.

2. The `borrow` function of the `LendingPool` allows borrows only with the
STABLE interest rate mode. Such behavior is enforced by the
`calculateUserReserveCollateralETHInvoicePool` function.

If it is done intentionally, we recommend removing the
`_interestRateMode` parameter and not allow to pass this value to the
function.

 Medium

1. The `initReserveWithData` function of the `LandingPoolConfigurator` is
lack of validations.

Consider validation for a reserve existence.

2. The `addReserve` function of the `RewardPoolAddressManagercan` can
be used to overwrite reward pool that is already exist.

We recommend to add validation for this case.

3. Purpose of the `liquidationCall` of the `LendingPool` function is unknown
and it can be called by anyone. The underlying contract is out of the audit
scope.

We recommend the Customer to ensure that it’s safe to allow everyone
to call this function.

4. Old compiler version is used.

We recommend updating to the latest stable one.

5. The `UserInfo` data structure of the RewardPool contains only 1 field and
can be removed to optimize gas consumption.

 Low

1. The `ReentrancyGuard` inheritance in the LendingPool is redundant
because `nonReentrant` modifier is never used.

We recommend adding this modifier to all external function of the

contract.

2. Returning of the bool value in the

`calculateUserReserveCollateralETHInvoicePool` function is redundant.

Its value is always true.

3. Passing of the `_interestRateMode` to the

`calculateUserReserveCollateralETHInvoicePool` function is redundant.

Its value should always be equal to the stable interest mode value.

4. A `RewardDenied` event of the RewardPool is never used.

5. The `exclusiveAddress` field of the RewardPool is never used.

 Lowest / Code style / Best Practice

1. The `calculateUserInvoiceCollateralETH` function of the
`LendingPoolDataProvider` has commented out code.

2. Multiple code style issues were found by static code analyzers.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 1 critical, 2 high, 5 medium, 5 low, and 2 informational

issue during the audit.

Notice: some contracts in the repository are not in the audit scope. They can
be used by or can use contacts from the scope. During the audit we consider
out-of-scope contracts as secure but cannot guaranty that they really are. We
recommend reviewing those contracts before using the system. Due to the
limited scope, we cannot guarantee that the whole system will work properly
all together. We recommend performing the full audit and UAT testing at the
production environment as it can reveal issues which cannot be reproduced
during the audit.

Violations in the following categories were found and addressed to Customer:

Category Check Item Comments

Code review ▪ Data Consistency ▪ Double voting is possible

▪ Inconsistent state may occur
as a result of manual
decimals set up.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

