

Customer: WOWToken

Date: February 24th, 2021

SMART CONTRACT

CODE REVIEW AND

SECURITY ANALYSIS

REPORT

This document may contain confidential information about IT systems and the

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the customer.

Document

Name Smart Contract Code Review and Security Analysis Report for WOWToken.

Type ERC-20 token with specific functionality

Platform Binance Smart Chain / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification,

Manual Review

Approved by Andrew Matiukhin | CTO and co-founder Hacken

BSCscan link

Initial Audit

https://bscscan.com/address/0x1767102dc35b1593f39564a96aabbbd31fd302c2

BSCscan link

Secondary Audit

https://bscscan.com/address/0x4da996c5fe84755c80e108cf96fe705174c5e36a

https://bscscan.com/address/0x79f8ac4e7b4e83ca1ad4c54dfc5eaec659a1fe56

Timeline 18TH
 FEB 2021 – 24TH

 FEB 2021

Changelog 22ND
 FEB 2021 - Initial Audit

24TH
 FEB 2021 - Secondary Audit

https://bscscan.com/address/0x1767102dc35b1593f39564a96aabbbd31fd302c2
https://bscscan.com/address/0x4da996c5fe84755c80e108cf96fe705174c5e36a
https://bscscan.com/address/0x79f8ac4e7b4e83ca1ad4c54dfc5eaec659a1fe56

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary .. 5

Severity Definitions .. 6

AS-IS overview... 7

Conclusion .. 17

Disclaimers ... 19

Introduction

Hacken OÜ (Consultant) was contracted by WOWToken (Customer) to conduct

a Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of Customer`s smart contract and its code

review conducted between February 18th, 2021 – February 22nd, 2021. Secondary

audit was done between February 23rd, 2021 – February 24th, 2021.

Scope

The scope of the project is main net smart contracts that can be found on

BSCscan:
https://bscscan.com/address/0x4da996c5fe84755c80e108cf96fe705174c5e36a

https://bscscan.com/address/0x79f8ac4e7b4e83ca1ad4c54dfc5eaec659a1fe56

We have scanned this smart contract for commonly known and more specific

vulnerabilities. List of the commonly known vulnerabilities that are considered:
Category Check Item

Code review  Reentrancy

 Ownership Takeover

 Timestamp Dependence

 Gas Limit and Loops

 DoS with (Unexpected) Throw

 DoS with Block Gas Limit

 Transaction-Ordering Dependence

 Style guide violation

 Costly Loop

 ERC20 API violation

 Unchecked external call

 Unchecked math

 Unsafe type inference

 Implicit visibility level

 Deployment Consistency

 Repository Consistency

 Data Consistency

Functional review  Business Logics Review

 Functionality Checks

 Access Control & Authorization

 Escrow manipulation

 Token Supply manipulation

 Assets integrity

 User Balances manipulation

 Data Consistency manipulation

 Kill-Switch Mechanism

 Operation Trails & Event Generation

https://bscscan.com/address/0x4da996c5fe84755c80e108cf96fe705174c5e36a
https://bscscan.com/address/0x79f8ac4e7b4e83ca1ad4c54dfc5eaec659a1fe56

Executive Summary

According to the assessment, the Customer’s smart contracts are well-secured.

Our team performed an analysis of code functionality, manual audit, and

automated checks with Mythril and Slither. All issues found during automated

analysis were manually reviewed and important vulnerabilities are presented in

the Audit overview section. A general overview is presented in AS-IS section and

all found issues can be found in the Audit overview section.

Security engineers found 3 high, 3 medium and 5 low severity issues during the

initial audit. All this risks were mitigated or accepted by customer during

secondary audit.

Graph 1. The distribution of vulnerabilities.

High [Fixed]

28%

Medium [Fixed]
18%

Low [Fixed]

27%

Medium [Risk

accepted]

9%

Low [Risk

accepted]

18%

High [Fixed]

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can

lead to assets lose or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also

have significant impact on smart contract execution, e.g. public access

to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they can’t

lead to assets lose or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused

etc. code snippets, that can’t have significant impact on execution

Lowest / Code

Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info

statements can’t affect smart contract execution and can be

ignored.

AS-IS overview

WOWToken smart contracts

WOWToken smart contract consists of library SafeMath, contract owned,

contract ERC20Interface, contract ApproveAndCallFallBack, contract

WOWSale, contract WOWToken.

SafeMath

Description

SafeMath is a standard OpenZeppelin library for mathematical operations to

prevent overflows.

owned

Description

owned is a standard smart contract for basic access control with an owner role.

ERC20Interface

Description

ERC20Interface is a standard interface that describes functions for ERC20 token.

ApproveAndCallFallBack

Description

ApproveAndCallFallBack is a standard interface that describes fallback function

on approve.

WOWSale

Description

WOWSale is a smart contract for WOWToken sale.

Imports

WOWSale is audited on-chain, thus, all imports are described above.

Inheritance

WOWSale contract is owned.

Usages

WOWSale contract has following usages:

 using SafeMath for uint256;

Structs

WOWSale contract has no custom structs.

Enums

WOWSale contract has no custom enums.

Events

WOWSale contract has following events:

 event ChangeRate(uint256 newRateUSD);

 event Sold(address buyer, uint256 amount);

 event CloseSale();

Modifiers

WOWSale contract has no custom modifiers.

Fields

WOWSale contract has following parameters:

 WOWToken public token;

 uint256 public totalSold;

 uint256 public rate = 200 ether;

 uint256 public tokenPrice = 5 ether;

 uint256 public startSale = 1614243600;

 uint256 public endSale = 1614502800;

 uint256 public maxBNB = 50 ether;

 uint256 public DEC;

Functions

WOWSale has following functions:

● constructor
Description

Sets WOWToken address

Visibility

public

Input parameters

 address wowToken

Constraints

None

Events emit

None

Output

None

● changeRate
Description

changes USD to BNB rate

Visibility

public

Input parameters

● uint newRateUSD

Constraints

● onlyOwner

Events emit

● emit ChangeRate(newRateUSD);

Output

True

● changeEndSale
Description

changes end sale date

Visibility

public

Input parameters

● uint256 newEndSale

Constraints

● onlyOwner

Events emit

None

Output

true

● buyTokens
Description

performs token purchase

Visibility

public payable

Input parameters

None

Constraints

None

Events emit

● emit Sold(msg.sender, buyAmount);

Output

True

● close
Description

Distributes collected BNB and returns unsold tokens

Visibility

public

Input parameters

None

Constraints

● onlyOwner

Events emit

 emit CloseSale();

Output

true

● fallback
Description

calls buyTokens function

Visibility

public payable

Input parameters

None

Constraints

None

Events emit

None

Output

None

WOWToken

Description

WOWToken is a smart contract for ERC20 token.

Imports

WOWToken is audited on-chain, thus, all imports are described above.

Inheritance

WOWToken contract is ERC20Interface, owned.

Usages

WOWToken contract has following usages:

 using SafeMath for uint256;

Structs

WOWToken contract has no custom structs.

Enums

WOWToken contract has no custom enums.

Events

WOWToken contract has no custom events.

Modifiers

WOWToken contract has no custom modifiers.

Fields

WOWToken contract has following parameters:

 string public symbol = "WOW";

 string public name = "WOWswap";

 uint8 public decimals = 18;

 uint256 DEC = 10 ** uint256(decimals);

 uint256 public _totalSupply = 1000000 * DEC;

 mapping(address => uint) balances;

 mapping(address => mapping(address => uint)) allowed;

Functions

WOWToken has following functions:

● constructor
Description

mints total supply to deployer

Visibility

public

Input parameters

None

Constraints

None

Events emit

● emit Transfer(0x0, owner, _totalSupply);

Output

None

● totalSupply
Description

returns totalSupply

Visibility

public view

Input parameters

None

Constraints

None

Events emit

Name

Output

_totalSupply

● balanceOf
Description

returns balance for address

Visibility

public view

Input parameters

None

Constraints

None

Events emit

None

Output

balances[tokenOwner]

● transfer
Description

performs token transfer

Visibility

public

Input parameters

● address to

● uint tokens

Constraints

None

Events emit

● emit Transfer(msg.sender, to, tokens);

Output

true

● approve
Description

performs token approve

Visibility

public

Input parameters

● address spender

● uint tokens

Constraints

None

Events emit

● emit Approval(msg.sender, spender, tokens);

Output

True

 increaseAllowance

Description

Increases allowance for spender

Visibility

public

Input parameters

● address spender

● uint amount

Constraints

None

Events emit

None

Output

approve(spender, allowed[msg.sender][spender].add(amount));

 decreaseAllowance

Description

Decreases allowance for spender

Visibility

public

Input parameters

● address spender

● uint amount

Constraints

None

Events emit

None

Output

approve(spender, allowed[msg.sender][spender].sub(amount));

● transferFrom
Description

performs token transfer for approved spender

Visibility

public

Input parameters

● address from

● address to

● uint tokens

Constraints

None

Events emit

● emit Transfer(from, to, tokens);

Output

true

● allowance
Description

returns allowance for owner and spender

Visibility

public view

Input parameters

● address tokenOwner

● address spender

Constraints

None

Events emit

Name

Output

allowed[tokenOwner][spender]

● approveAndCall
Description

performs token approve with callback

Visibility

public

Input parameters

● address spender

● uint tokens

● bytes memory data

Constraints

None

Events emit

None

Output

true

Audit overview

 Critical

No critical issues were found.

 High

1. [Fixed] Approve function can’t be used to change approved amount that is

not 0. For example, if address1 approved 1 token to address to, it can’t

change approved amount to 2. It needs to change it to 0 and after that

change to 2. It doesn’t follow standard and may cause integration issues

with other smart contracts.

2. [Fixed] WOWToken doesn’t implement increaseAllowance and

decreaseAllowance functions that protect from approve front running

attacks. Absence of these functions may cause integration issues with other

smart contracts.

3. [Fixed] The actual token rate for token sale will be different for most of

configurations. For example, BNB price is set to 128 USD and token price

is set to 5 USD, however, you’ll get 25 tokens for 1 BNB because the

integer division will remove remainder of the division.

 Medium

4. [Fixed] SafeMath is used as contract not as library. It will cause additional

gas usage for smart contract function calls.

5. [Fixed] It’s highly recommended to split tokensale and token contract into

2 contracts so it will reduce potential risks for token after token sale is

ended.

6. [Risk accepted] Because the price is set in USD it’s possible to frontrun

rate change and buy the token with lower rate. Generally, it’s

recommended to fix the sale rate in BNB and not to convert to USD.

 Low

7. [Fixed] ERC20Interface doesn’t implement standard ERC20 interface, it

has additional non-ERC20 functions in it.

8. [Fixed] Solidity version is used is outdated, it has some known compiler

issues for it. It’s recommended to use higher compiler version.

9. [Fixed] Smart contract imports outdated libraries which may use additional

gas on transactions.

10. [Risk accepted] Code is not covered with in-code documentations; it’s

recommended to add function description for all functions.

11. [Risk accepted] No unit tests were developed for the project. It’s

recommended to have 100% test coverage for code.

 Lowest / Code style / Best Practice

No lowest issues were found.

Conclusion

Smart contracts within the scope was manually reviewed and analyzed with static

analysis tools. For the contract high level description of functionality was

presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security engineers found 3 high, 3 medium and 5 low severity issues during the

initial audit. All this risks were mitigated or accepted by customer during

secondary audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the

best industry practices at the date of this report, in relation to cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report, (Source Code); the Source Code compilation, deployment

and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also cannot

be considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have done

our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only - we recommend proceeding with

several independent audits and a public bug bounty program to ensure security of

smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The platform,

its programming language, and other software related to the smart contract can

have own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee

explicit security of the audited smart contracts.

