

Customer: DAO maker
Date: March 8th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems
and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Dao
Maker

Approved by Andrew Matiukhin | CTO Hacken OU

Type Rewards pool

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Repository https://github.com/daomaker/staking-contract-new/

Commit 2144f6b0af21786be5ff96d42f2737d79cab3275

Timeline 04 MAR 2021 – 08 MAR 2021

Changelog 05 MAR 2021 – INITIAL AUDIT
08 MAR 2021 – SECOND REVIEW.

Table of contents

Introduction ..4

Scope...4

Executive Summary...5

Severity Definitions..7

AS-IS overview..8

Conclusion...19

Disclaimers..20

Introduction

Hacken OÜ (Consultant) was contracted by DAO Maker (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
March 3rd, 2021 – March 5th, 2021.

Second review conducted on Match 8th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository: https://github.com/daomaker/staking-contract-new/
Commit: 2144f6b0af21786be5ff96d42f2737d79cab3275
Files: Farm.sol, FarmManager.sol
We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review
▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secure. Though one issue that can be exploited in a case of the
ownership takeover exist.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 3 high, 4 medium, and 1 informational
issue during the audit.

After the second review Customers` smart contracts contains 1 high
severity issues.

Notice:

1. The Farm contract may be stopped by owners.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. Distribution of vulnerabilities after the initial audit.

Graph 2. Distribution of vulnerabilities after the second review.

High
37%

Medium
50%

Informational
13%

High Medium Informational

High
100%

High

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't
have a significant impact on execution

Informational
/ Code Style

/ Best
Practice

Informational vulnerabilities, code style
violations, and info statements can't affect smart
contract execution and can be ignored.

AS-IS overview

FarmManager.sol

Description

FarmManager manages Farm contracts.

Inheritance

FarmManager contract is Ownable.

Usages

FarmManager contract has following usages:

• SafeERC20 for IERC20
• SafeMath for uint25

Structs

FarmManager contract has no custom structures.

Enums

FarmManager contract has no custom enums.

Events

FarmManager contract has one custom event:

• FarmAdded

Modifiers

FarmManager has no custom modifier.

Fields and constants

FarmManager contract has following fields:

• IFarm[] public farms;
• IERC20[] public stakingTokens
• mapping(address => bool) public funders
• uint public moveBurnRate = 5
• uint public burnRate = 100
• uint public unstakeEpochs = 10
• bool public paused
• address public redistributor

Functions

FarmManager has following external functions:

• constructor
Description
Initializes the contract. Sets a deployer as funder and

redistributor.
Visibility
None
Input parameters
None
Constraints
None
Events emit
None
Output
None

• newFarm
Description
Add a new farm to the manager. Adds all existing staking

tokens to farm.
Visibility
public
Input parameters

o IFarm farm
Constraints

o Can only be called by the owner.
Events emit
None
Output
None

• add
Description
Add a new staking token to the manager. Also adds to all

existing farms.
Visibility
public
Input parameters

o uint allocPoint
o IERC20 stakingToken

Constraints
o Can only be called by the owner.

Events emit
None
Output
None

• set
Description

Update allocation point of a pool.
Visibility
public
Input parameters

o uint allocPoint
o uint _fid
o uint _pid
o bool _withUpdate

Constraints
o Can only be called by the owner.

Events emit
None
Output
None

• fund
Description
Fund a farm with amount. must give allowance to created farm

first.
Visibility
public
Input parameters

o uint _fid
o uint256 _amount

Constraints
o Can only be called by the owner.
o An allowance should be set for a farm contract.

Events emit
None
Output
None

• changePool
Description
Allow stakers within a pool to move their stakes.
Visibility
public
Input parameters

o uint _currentFid
o uint _nextFid
o uint _pid

Constraints
o Stake amount should be greater than 0.
o Unstake amount should be 0.
o Withdrawal should not be requested.

Events emit
None
Output
None

• emergencyWithdrawRewards
Description
Withdraws all reward tokens.
Visibility
public
Input parameters
None
Constraints

o Can only be called by the owner.
Events emit
None
Output
None

• updateFunders, setMoveBurnRate, setBurnRate,
setUnstakeEpochs, setPaused, setRedistributor
Description
Simple setter function with only owner access.

• getRedistributor, getMoveBurnRate, getBurnRate,
getUnstakeEpochs, getPaused
Description
Simple getters.

Farm.sol

Description

Farm is a liquidity pool with rewards in ERC-20 tokens.

Inheritance

Farm does not inherit anything.

Usages

Farm contract has following usages:

• SafeMath for uint256
• SafeERC20 for IERC20

Structs

Farm contract has following data structures:

• UserInfo
• PoolInfo

Enums

Farm contract has no enums.

Events

Farm contract has following events:

• Deposit
• Withdraw
• Claim
• Unstake
• Initialize

Modifiers

Farm has no custom modifiers.

Fields

Farm contract has following fields and constants:

• IERC20 public erc20
• uint256 public paidOut = 0
• uint256 public rewardPerBlock
• IFarmManager public manager
• PoolInfo[] public poolInfo
• mapping (uint256 => mapping (address => UserInfo)) public

userInfo
• uint256 public totalAllocPoint = 0
• uint256 public startBlock
• uint256 public endBlock
• uint256 public constant SECS_EPOCH = 86400

Functions
Farm has following public functions:

• constructor
Description
Sets initial values of the contract.
Visibility
public
Input parameters

o IERC20 _erc20
o uint256 _rewardPerBlock
o uint256 _startBlock
o address _manager

Constraints
None
Events emit
Emits the Initialize event.

Output
None

• add
Description
Add a new lp to the pool.
Visibility
public
Input parameters

o uint256 _allocPoint
o IERC20 _stakingToken
o bool _withUpdate

Constraints
o Can only be called by the FarmManager.

Events emit
None
Output

 None
• set

Description
Update the given pool's allocation point
Visibility
public
Input parameters

o uint256 _pid
o uint256 _allocPoint
o bool _withUpdate

Constraints
o Can only be called by the FarmManager.

Events emit
None
Output

 None
• massUpdatePools

Description
Update reward variables for all pools.
Visibility
public
Input parameters
None
Constraints
None
Events emit
None
Output

 None
• updatePool

Description
Update reward variables of the given pool to be up-to-date.
Visibility
public
Input parameters

o uint256 _pid
Constraints
None
Events emit
None
Output

 None
• move

Description
Moves LP tokens to another farm.
Visibility
external
Input parameters

o uint256 _pid
Constraints

o Can only be called from the FarmManager.
Events emit
Emits the Withdraw event.
Output

 None
• deposit

Description
Deposit LP tokens.
Visibility
external
Input parameters

o uint256 _pid
o uint256 _amount

Constraints
o The contract should not be paused.
o Unstake should not be requested.

Events emit
Emits the Deposit event.
Output

 None
• withdraw

Description
Creates a request to unstake all LP tokens.
Visibility
external
Input parameters

o uint256 _pid

Constraints
o The contract should not be paused.
o A message sender should have active balance.
o Should not be requested yet.

Events emit
Emits the Withdraw event.
Output

 None
• unstake

Description
Withdraw LP tokens. Fee may be applied if unstakeEpochs did

not passed yet.
Visibility
external
Input parameters

o uint256 _pid
Constraints

o Unstake should not be requested.
Events emit
Emits the Unstake event.
Output

 None
• claim

Description
Claims LP tokens from Farm.
Visibility
external
Input parameters
None
Constraints
None
Events emit

o The contract should not be paused yet.
Output

 None
• emergencyWithdraw

Description
Allows the FarmManager contract to withdraw all rewards to a

tx origin.
Visibility
public
Input parameters
None
Constraints
None
Events emit

o Can only be called by the FarmManager.

Output
 None

• poolLength
Description
Returns a number of LPs.

• deposited
Description
Returns deposited amount of a user to a pool.

• pending
Description
Returns total rewards that have to be payd to a used for a

specified pid.
• totalPending

Description
Returns total rewards that have to be paid to all users.

• getUserInfo
Description
Returns a user info.

Audit overview

 Critical

No critical issues were found.

 High

1. Owners can set up any number of unstake epochs and any burn
rate. As a result, users may lose all their funds when the
unstake function is called.
Fixed before the second review. Upper limits for all
mentioned values are introduced.

2. Contracts allows to withdraw all reward tokens from all
Farms with a single transaction using the owner address.
This issue may be exploited in a case of ownership
takeover.

 Medium

1. The newFarm function of the FarmManager has no validation
for a farm existence. As a result, farms may be duplicated,
and the system may become inconsistent.
Fixed before the second review.

2. The add function of the Farm contract has no validation for
a staking contract existence. As a result the contract may
become inconsistent.
Fixed before the second review.

3. The deposit function of the Farm contract operates with the
tx.origin instead of the msg.sender to allow moving from
one farm to another. As a result the contract may not be
used by other contracts.
Fixed before the second review.

4. The unstakeAmount field of the UserInfo struct is redundant
and may be removed or replaced with boolean value for a
case when withdraw is requested.
Fixed before the second review.

 Low

No low severity issues were found.

 Informational/ Code style / Best Practice

1. Some code-style issues were found by the static code
analyzer.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 3 high, 4 medium, and 1 informational
issue during the audit.

After the second review Customers` smart contracts contains 1 high
severity issues.

Violations in the following categories were found and addressed
to Customer:

Category Check Item Comments

Code review ▪ Asset’s integrity ▪ All reward may be
withdrawn by owners in
one transaction

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

