

Customer: Refinable
Date: April 4th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Refinable.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Multiple purposes contracts

Platform Ethereum, Binance Smart Chain, Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Repository https://github.com/refinableco/contracts-tge
Commit
Deployed
contract

Timeline 28 MAR 2021 – 31 MAR 2021
Changelog 28 MAR 2021 – INITIAL AUDIT

4 APR 2021 – REMEDIATION CHECK

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 6

AS-IS overview 7

Conclusion 26

Disclaimers 27

Introduction

Hacken OÜ (Consultant) was contracted by Refinable (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
March 28th, 2021 – March 31st, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/refinableco/contracts-tge
Files:
 blockchain/contracts/interfaces/IBEP20.sol
 blockchain/contracts/libs/Context.sol

blockchain/contracts/libs/Math.sol
blockchain/contracts/libs/Ownable.sol
blockchain/contracts/libs/SafeBEP20.sol
blockchain/contracts/libs/SafeMath.sol
blockchain/contracts/Factory.sol
blockchain/contracts/Migrations.sol
blockchain/contracts/RefinableToken.sol
blockchain/contracts/TestCalls.sol
blockchain/contracts/TimeLockedMultiSigWallet.sol
blockchain/contracts/TimeLockedMultiSigWalletFactory.sol
blockchain/contracts/TokenVesting.sol
blockchain/contracts/TokenVestingFactory.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency
Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secure.

 You are here

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 0 critical, 1 high, 2 medium, 1 low, and
2 informational issues during the audit. All the issues were fixed
for the secondary audit.

Insecure Poor secured Secured Well-secured

Graph 1. The distribution of vulnerabilities after the first review.

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

Factory.sol

Description

Factory is a contract used to provide a framework for registering
and generating contract factories.

Imports

Factory contract has no imports.

Inheritance

Factory contract does not inherit.

Usages

Factory contract has no usages.

Structs

Factory contract has no structs

Enums

Factory contract has no custom enums.

Events

Factory contract has following events:

● ContractInstantiation - Emitted when a contract is
instantiated

Modifiers

Factory has no modifiers.

Fields

Factory contract has the following fields:

● mapping(address => bool) public isInstantiation - Used for
tracing whether or not a contract has been instantiated

● mapping(address => address[]) public instantiations -
Tracking the address of the instantiations

● mapping(address => string) public walletName - Tracking the
character name of the wallet address that has been
instantiated

Functions

Factory has no public functions.

RefineableToken.sol

Description

RefineableToken is a standard BEP-20 token (a representation of
the ERC-20 standard utilized on the Binance Smart Chain). It has
the following configuration supplied for its creation, and matches
the standard BEP-20 token specification. The Refinable token has
a fixed supply of 500 million tokens.

_name = 'Refinable Token';

_symbol = 'FINE';

_decimals = 18;

_totalSupply = 5 * 10**8 * 10**18; // 500m

TestCalls.sol

Description

TestCalls contains only those functions for usage such that one
may test low-level calls issued from the multisig wallet. It
should not be included within a production deployment.

TimeLockedMultiSigWalletFactory.sol

Description

TimeLockedMultiSigWalletFactory is a factory contract that
allows for creation of numerous TimeLockedMultiSigWallet
contracts. It possesses a single public function, create, which
allows for a new TimeLockedMultiSigWallet to be generated, with
variables _owners (the addresses of initial ownership), _required
(Number of required confirmations), and _unlockDate (the date at
which the multi-signature wallet is unlocked). The contract only
allows one to generate a new TimeLockMultiSigWallet and not
interact with existing TimeLockMultiSig wallets.

TimeLockedMultiSigWallet.sol

Description

TimeLockedMultiSigWallet provides a time-based vesting
functionality.

Imports

TimeLockedMultiSigWallet contract has no imports

Inheritance

TimeLockedMultiSigWallet contract does not inherit from other
contracts.

Usages

● TimeLockedMultiSigWallet contract has no usages.

Structs

TimeLockedMultiSigWallet contract has following data structures:

● Transaction - Used to store transaction information

Enums

TimeLockedMultiSigWallet contract has no enums

Events

TimeLockedMultiSigWallet contract has the following events:

● Confirmation - Emit when an owner confirms a transaction

● Revocation - Emit when an owner revokes a prior confirmation

● Submission - Emit when a new transaction is added to the
transaction mapping

● Execution - Emit when a confirmed transaction is executed

● ExecutionFailure - Emit when a confirmed transaction fails
to execute

● Deposit - Emit when a deposit is added

● OwnerAddition - Emit when an owner is added

● OwnerRemoval - Emit when an owner is removed

● RequirementChange - Emit when the number of required
confirmation changes

Modifiers

TimeLockedMultiSigWallet has the following custom modifiers:

● onlyWallet - Sender is the wallet address
● ownerDoesNotExist - Used in cases in which the owner does

not exist
● ownerExists - Used in cases in which the owner does exist
● TransactionExists - Used in cases in which the transaction

exists
● confirmed - Used in cases in which an existing transaction

is confirmed by owners
● notConfirmed - Used in cases in which an existing transaction

is not yet confirmed
● notExecuted - Used in cases in which an existing transaction

has been confirmed but not yet executed
● notNull - Used to ensure the address is not the 0 address
● isUnlocked - Used to validate whether or not the wallet is

still in the timelock
● validRequirement - Used to ensure the owner count and number

of required confirmation changes align

Fields

TimeLockedMultiSigWallet contract has following constants and
fields:

● uint256 public constant MAX_OWNER_COUNT = 50;

● mapping(uint256 => Transaction) public transactions;

● mapping(uint256 => mapping(address => bool)) public
confirmations;

● mapping(address => bool) public isOwner;

● address[] public owners;

● uint256 public required;

● uint256 public transactionCount;

● uint256 public unlockDate;

Functions

TimeLockedMultiSigWallet has following public functions:

● Fallback function
Description
Allows transferring ETH to the contract.

● addOwner
Description
Adds a new owner to the multi-sig wallet
Visibility
public
Input parameters

o address owner

Constraints
o New owner must not already exist
o New owner must not be the 0 address
o New owner must be within the acceptable amount of

owners as determined by validRequirement
Events emit
Emits the OwnerAddition event.
Output
None

● removeOwner
Description
Remove an owner from the multi-sig wallet
Visibility
public
Input parameters

o address owner

Constraints
o Only wallet can call

Events emit
Emits the OwnerRemoval event.
Output
None

● replaceOwner
Description

Replace an owner in the multi-sig wallet
Visibility
public
Input parameters

o address owner

o address newOwner
Constraints

o Only wallet can call
o owner must exist as owner
o newOwner must not exist as owner

Events emit
Emits the OwnerRemoval event and the OwnerAddition event.
Output
None

● changeRequirement
Description
Change the number of required confirmations for the multi-

signature wallet
Visibility
public
Input parameters

o uint256 _required
Constraints

o Only wallet can call
o Required number of confirmations must be a valid

requirement length (as determined by the modifier)
Events emit
Emits the RequirementChange event
Output
None

● submitTransaction
Description
Allows an owner to submit and confirm a transaction.
Visibility
public
Input parameters

o uint256 transactionId
Constraints

o N/A
Events emit
N/A
Output

None
● revokeConfirmation

Description
Allows an owner to revoke a confirmation for a transaction.
Visibility
public
Input parameters

o uint256 transactionId
Constraints

o Owner must exist
o Transaction must exist
o Transaction must be confirmed
o Transaction must not be already executed

Events emit
Emits the Revocation event
Output
None

● executeTransaction
Description
Allows anyone to execute a confirmed transaction.
Visibility
public
Input parameters

o uint256 transactionId
Constraints

o Owner must exist
o Transaction must exist
o Transaction must be confirmed
o Transaction must not be already executed

Events emit
Emits the Execution event in the event of a success, or the
ExecutionFailure event in the event of a failed execution.
Output
None

● external_call
Description
Creates a loop that copies tx.data into memory
Visibility
internal
Input parameters

o address destination
o uint256 value

o uint256 dataLength
o bytes memory data

Constraints
o N/A

Events emit
N/A
Output
Result, which is the return data of the call

● getTransactionIds, getConfirmations, getTransaction,
getUnlockDate, getOwners, getTransactionCount,
getConfirmationCount
Description

 Simple view functions.

TokenVesting.sol

Description

TokenVesting is a token balance release contract which mirrors
that of a traditional equity vest.

Imports

TokenVesting contract has the following imports:

● ../libs/SafeBEP20.sol

● ../libs/Ownable.sol

● ../libs/SafeMath.sol

Inheritance

TokenVesting contract is Ownable.

Usages

TokenVesting contract has following usages:

● SafeMath for uint256
● SafeBEP20 for IBEP20

Structs

TokenVesting contract has no structs.

Enums

TokenVesting contract has no enums.

Events

TokenVesting contract has no events.

Modifiers

TokenVesting has no modifiers.

Fields

TokenVesting contract has following constants and fields:

● address private _beneficiary - The beneficiary of the
● uint256 private _cliff -
● uint256 private _start -
● uint256 private _duration -
● bool private _revocable - A boolean for determining if a

particular vesting contract can be revoked
● mapping(address => uint256) private _released - A mapping of

which vesting contracts have been released
● mapping(address => bool) private _revoked - A mapping of

which vesting contracts have been revoked

Functions

TokenVesting has following public functions:

● constructor
Description
Initializes the contract.
Visibility
public
Input parameters

o address beneficiary - address of the beneficiary to whom
vested tokens are transferred

o uint256 start - the time (as Unix time) at which point
vesting starts

o uint256 cliffDuration - duration in seconds of the cliff
in which tokens will begin to vest

o uint256 duration - duration in seconds of the period in
which the tokens will vest

o bool revocable - whether the vesting is revocable or
not

o address owner - the owner of the vesting contract

Constraints
None
Events emit
None
Output
None

● release
Description
Transfers vested tokens to beneficiary.
Visibility
public
Input parameters

o IBEP20 token - The BEP20 token which is being vested

Constraints
None
Events emit
TokensReleased - Emit on the release of tokens to the
beneficiary
Output
None

● revoke
Description
Allows the owner to revoke the vesting. Tokens already vested
remain in the contract, the rest are returned to the owner.
Visibility
public
Input parameters

o IBEP20 token - The BEP20 token which is being vested

Constraints
None
Events emit
TokenVestingRevoked - Emits following the revocation and
transfer of the remaining non-vested tokens
Output
None

● beneficiary, cliff, start, duration, revocable, released,
revoked, vestedAmount, _releaseableAmount, _vestedAmount
Description

 Simple view functions.

TokenVestingFactory.sol

Description

TokenVestingFactory is a factory contract that allows for
creation of numerous TokenVesting contracts. It possesses a single
public function, create, which allows for a new TokenVesting
contract to be generated, with variables _beneficiary (the
individual or entity who has the vesting interest), _start (time
period at which vesting starts), _cliffDuration (the amount of
time covered within the vesting cliff, the period during which
the minimum cliff must first be reached prior to payout),
_duration (the period of time during which the ownership is
vesting), _revocable (a boolean which indicates whether or not
the vesting can be revoked) and _owner (the ownership address who
initiates the creation of the token vesting contract).

The contract only allows one to generate a new TokenVesting
contract and not interact with existing TokenVesting contracts.

Audit overview
 Critical

No critical findings

 High

1. [Fixed] Hard-coded gas amounts in
blockchain/contracts/TimeLockedMultiSigWallet.sol could
lead to failed execution during periods of high gas
volatility.

 Medium

1. [Fixed] An older compiler version is used.

 We recommend updating to the latest stable one.

2. [Fixed] In the replaceOwner function in
TimeLockedMultiSigWallet.sol, assert that the newOwner
argument is not null to prevent assignment to a null address.

 Low

1. [Fixed] The Gnosis MultiSig library used within the contracts
has since been deprecated and usage of the SafeWallet
(https://github.com/gnosis/safe-contracts) is now suggested.

 Lowest / Code style / Best Practice

1. [Fixed] Multiple functions should be declared external in
order to save gas.

2. [Fixed] Multiple code style issues were found by static code
analyzers.

https://github.com/gnosis/safe-contracts

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in the As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 0 critical, 1 high, 2 medium, 1 low, and
2 informational issues during the audit. All the issues were fixed
for the secondary audit.

Violations in the following categories were found and addressed
to Customer:

Category Check Item Comments

Code review ▪ Style Guide Violation ▪ Multiple instances of
Mixed Case violation

▪ Multiple occurrences
can be marked external
(which does have gas
savings)

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platforms.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

