

Customer: RAMP

Date: April 9th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for RAMP

Approved by Andrew Matiukhin | CTO Hacken OU

Type Complex

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/RAMP-DEFI/ramp-protocol

Commit

Deployed
contract

Timeline 22 MAR 2021– 09 APR 2021

Changelog 09 APR 2021 – INITIAL AUDIT

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 7

AS-IS overview .. 8

Conclusion .. 39

Disclaimers .. 40

Introduction

Hacken OÜ (Consultant) was contracted by RAMP (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code

review conducted between March 22nd, 2021 – April 9th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/RAMP-DEFI/ramp-protocol
File:

AppSettings.sol
Controller.sol
CakeLpStrategy.sol
PancakePoolStrategy.sol
StaticErcStrategy.sol
SushiLpStrategy.sol
BaseStrategy.sol
RampStakingStrategy.sol
ERC677.sol
ERC677Receiver.sol
ERC677Upgradeable.sol
IERC677.sol
IERC677Upgradeable.sol
RToken.sol
RUSD.sol
Bank.sol
BankV2.sol
BonusPool.sol
Vault.sol
VaultV2.sol

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secure.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and

all found issues can be found in the Audit overview section.

Security engineers found 2 low issue during the audit.

Notice: The source code of the contracts does not contain critical issues, well
designed, and covered with tests. There are some minor issues about gas usage
and logical optimisation, but they have no influence for the contracts’ security.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the first review.

Low
100% Low

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

Controller.sol

Description

Controller is used by admins), for adding/removing tokens, strategy, for setting
different states for strategy/vault

Imports

Controller has following imports:

• import "../dependencies/openzeppelin/contracts-

upgradeable/access/OwnableUpgradeable.sol";

• import "../dependencies/openzeppelin/contracts-
upgradeable/utils/ReentrancyGuardUpgradeable.sol";

• import "../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "../dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/ERC20Upgradeable.sol";

• import "../dependencies/openzeppelin/contracts-

upgradeable/access/AccessControlUpgradeable.sol";

• import "../strategies/BaseStrategy.sol";

• import "../libraries/RTokenAdapter.sol";

• import "../libraries/Helpers.sol";

• import "../token/RToken.sol";

• import "../interfaces/ramp/IPriceOracle.sol";

• import "../Bank.sol";

• import "../Vault.sol";

Inheritance

Controller inherit Helpers, AccessControlUpgradeable,
ReentrancyGuardUpgradeable.

Usages

Controller contract has following usages:

• using SafeERC20Upgradeable for IERC20Upgradeable;

• using RTokenAdapter for IERC20Upgradeable;

Structs

Controller contract has no custom structures.

Enums

Controller contract has no enums.

Events

Controller contract has following events:

• event TokenAdded(address token, uint16 collateralRatio, uint256
mintCapacity, address oracle, address strategy);

• event CollateralRatioUpdated(address token, uint16 collateralRatio);

• event LiquidationRatioUpdated(address token, uint16 _liquidationRatio);

• event MintCapacityUpdated(address token, uint256 _mintCapacity);

• event TreasuryUpdated(address _treasury);

• event StrategyInstalled(address token, address strategy);

• event StrategyUnInstalled(address token, address strategy);

• event StrategyWithdrawal(address token, address strategy);

• event EmergencyStrategyWithdrawal(address token, address strategy,
bool abandonRewards);

• event StrategyPaused(address token, address strategy);

• event OracleUpdated(address token, address oracle);

Modifiers
Controller has following modifiers:

• onlyOperator ()

Fields
Controller contract has following fields and constants:

• Bank public bank;

• Vault public vault;

• mapping(address => address) public rTokensToAssets;

Functions
Controller has following public functions:

• addToken

• setOracle

• updateCollateralRatio

• updateLiquidationRatio

• updateMintCapacity

• updateTreasury

• activateStrategy

• uninstallStrategy

• withdrawStrategy

• replaceStrategy

• emergencywithdrawStrategy

• pauseStrategy

• updateStrategyStatus

AppSettings.sol

Description

Simple contract to keep system-wide settings.

Imports

StakeManager has following imports:

• /openzeppelin/contracts/access/AccessControl.sol

Inheritance
AppSettings is AccessControl.

Usages

AppSettings contract has no usages.

Structs

AppSettings contract has no data structures

Enums

AppSettings contract has no enums.

Events

AppSettings contract has no events.

Modifiers

AppSettings has following modifiers:

• onlyAdmin ()

Fields
AppSettings contract has following fields and constants:

• mapping(bytes32 => uint256) public uintStorage;

• mapping(bytes32 => string) public stringStorage;

• mapping(bytes32 => address) public addressStorage;

• mapping(bytes32 => bool) public boolStorage;

Functions
AppSettings has following public functions:

• constructor

• setUint

• setString

• setAddress

• setBool

CakeLpStrategy.sol

Description

Pluggable contracts that allow for (re)investing of tokens from the Vaults

Imports

CakeLpStrategy has following imports:

• import "../../dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/IERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-
upgradeable/access/OwnableUpgradeable.sol";

• import "../../strategies/BaseStrategy.sol";

• import "../../interfaces/pancake/IMasterChef.sol";

• import "../../interfaces/pancake/IPancakeswapRouter.sol";

Inheritance

CakeLpStrategy is OwnableUpgradeable, BaseStrategy.

Usages

CakeLpStrategy contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

Structs

CakeLpStrategy contract has following data structures:

• PoolInfo

Enums

CakeLpStrategy contract has no enums.

Events

CakeLpStrategy contract has following events:

• SetPoolInfo

• ChangedRampPerBlock

• EmptyRewardPool

Modifiers

CakeLpStrategy has no modifiers

Fields

CakeLpStrategy contract has following fields and constants:

• mapping(address => bool) private recoverableTokensBlacklist;

Functions
CakeLpStrategy has following public functions:

• initializer

• getPoolAmount

• setPoolInfo

• getBalance

• getStrategyType

• update

• onDeposit

• onWithdraw

• work

• emergencyWithdraw

• sweep

PancakePoolStrategy.sol

Description

Pluggable contracts that allow for (re)investing of tokens from the Vaults

Imports

PancakePoolStrategy has following imports:

• import "../../dependencies/openzeppelin/contracts-
upgradeable/math/SafeMathUpgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/IERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-
upgradeable/access/OwnableUpgradeable.sol";

• import "../../strategies/BaseStrategy.sol";

• import "../../interfaces/pancake/IMasterChef.sol";

• import "../../interfaces/pancake/ISmartChef.sol";

• import "../../interfaces/pancake/IPancakeswapRouter.sol";

• import "../../strategies/BaseStrategy.sol";

Inheritance

PancakePoolStrategy is OwnableUpgradeable, BaseStrategy.

Usages

PancakePoolStrategy contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

Structs

PancakePoolStrategy contract has following data structures:

• PoolInfo

• HarvestSignature

Enums

PancakePoolStrategy contract has no enums.

Events

PancakePoolStrategy contract has no events:

Modifiers

PancakePoolStrategy has no modifier

Fields

PancakePoolStrategy contract has following fields and constants:

• address constant public wbnb =

address(0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c);

• address constant public cake =
address(0x0E09FaBB73Bd3Ade0a17ECC321fD13a19e81cE82);

• uint256 public currentPool;

• PoolInfo[] public poolInfo;

• uint256[] public yields;

• address constant public pancakeRouter =

address(0x05fF2B0DB69458A0750badebc4f9e13aDd608C7F);

• address constant public masterchef =
address(0x73feaa1eE314F8c655E354234017bE2193C9E24E);

• address public yieldCalculator;

• uint constant public MAX_FEE = 100;

• uint constant public WITHDRAWAL_FEE = 10;

• uint constant public WITHDRAWAL_MAX = 10000;

• address[] public wbnbToCakeRoute;

• string public constant name = "RampPancakePoolStrategy";

• uint256 public nonce;

Functions
PancakePoolStrategy has following public functions:

• initializer

• deposit

• onDeposit

• work

• getBalance

• getBalance

• update

• onWithdraw

• onLiquidate

• harvest

• getPoolAmount

• balanceOfCake

• poolBalance

• balanceOf

• emergencyWithdraw

• getStrategyType

• sweep

StaticErcStrategy.sol

Description

Pluggable contracts that allow for (re)investing of tokens from the Vaults

Imports

StaticErcStrategy has following imports:

• import "../../dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/IERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/access/OwnableUpgradeable.sol";

• import "../../strategies/BaseStrategy.sol";

• import "hardhat/console.sol";

Inheritance
StaticErcStrategy is OwnableUpgradeable, BaseStrategy.

Usages

StaticErcStrategy contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

Structs

StaticErcStrategy contract has following data structures:

• PoolInfo

• UserInfo

Enums

StaticErcStrategy contract has no enums.

Events

StaticErcStrategy contract has no events:

Modifiers

StaticErcStrategy has no modifier

Fields

StaticErcStrategy contract has following fields and constants:

• PoolInfo public poolInfo;

• uint256 private poolAmount;

• mapping(address => UserInfo) public userInfo;

• IERC20Upgradeable rewardToken;

• IERC20Upgradeable stakedToken;

• address public farmingWallet;

Functions

StaticErcStrategy has following public functions:

• initializer

• deposit

• onDeposit

• work

• getBalance

• getBalance

• update

• onWithdraw

• onLiquidate

• harvest

• getPoolAmount

• balanceOfCake

• poolBalance

• balanceOf

• emergencyWithdraw

• getStrategyType

• sweep

SushiLpStrategy.sol

Description

Pluggable contracts that allow for (re)investing of tokens from the Vaults

Imports

SushiLpStrategy has following imports:

• import "../../dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/IERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "../../dependencies/openzeppelin/contracts-

upgradeable/access/OwnableUpgradeable.sol";

• import "../../strategies/BaseStrategy.sol";

• import "hardhat/console.sol";

Inheritance
SushiLpStrategy is OwnableUpgradeable, BaseStrategy.

Usages

SushiLpStrategy contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

Structs

SushiLpStrategy contract has following data structures:

• UserInfo

Enums

SushiLpStrategy contract has no enums.

Events

SushiLpStrategy contract has no events:

• event StrategyDeposit(address indexed user, uint256 indexed pid,
uint256 amount);

• event StrategyWithdraw(address indexed user, uint256 indexed pid,
uint256 amount);

• event SetPoolInfo(address token, uint256 poolId);

• event Liquidated(address indexed user, uint256 pid, uint256 _amount);

Modifiers

SushiLpStrategy has no modifier

Fields

SushiLpStrategy contract has following fields and constants:

• PoolInfo public poolInfo;

• uint256 private poolAmount;

• mapping(address => UserInfo) public userInfo;

• IERC20Upgradeable rewardToken;

• IERC20Upgradeable stakedToken;

• address public farmingWallet;

Functions

SushiLpStrategy has following public functions:

• initializer

• deposit

• onDeposit

• work

• getBalance

• getBalance

• update

• onWithdraw

• onLiquidate

• harvest

• getPoolAmount

• balanceOfCake

• poolBalance

• balanceOf

• emergencyWithdraw

• getStrategyType

• sweep

RampStakingStrategy.sol

Description

Pluggable contracts that allow for (re)investing of tokens from the Vaults

Imports

RampStakingStrategy has following imports:

• import "../dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "../dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/IERC20Upgradeable.sol";

• import "../dependencies/openzeppelin/contracts-

upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "../dependencies/openzeppelin/contracts-
upgradeable/access/OwnableUpgradeable.sol";

• import "../strategies/BaseStrategy.sol";

Inheritance
RampStakingStrategy is OwnableUpgradeable, BaseStrategy.

Usages

RampStakingStrategy contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

Structs

RampStakingStrategy contract has following data structures:

• PoolInfo

Enums

RampStakingStrategy contract has no enums.

Events

RampStakingStrategy contract has no events:

• event ChangedRampPerBlock(uint256 oldRampPerBlock, uint256
newRampPerBlock)

• event EmptyRewardPool()

Modifiers

RampStakingStrategy has no modifier

Fields

RampStakingStrategy contract has following fields and constants:

• uint256 constant DECIMALS = 18;

• uint256 constant UNITS = 10 ** DECIMALS;

• uint256 public constant BLOCK_ESTIMATE = 2425847;

• IERC20Upgradeable public rampToken;

• address public rampTokenFarmingWallet;

• PoolInfo public poolInfo;

• uint256 private poolAmount;

Functions

SushiLpStrategy has following public functions:

• initializer

• deposit

• onDeposit

• work

• getBalance

• getBalance

• update

• onWithdraw

• onLiquidate

• harvest

• getPoolAmount

• balanceOfCake

• poolBalance

• balanceOf

• emergencyWithdraw

• getStrategyType

• sweep

Bank.sol

Description

Allows user to borrow rUSD, to repay the borrowed rUSD, prices can come from

Oracles or from our own offchain oracle that provides signed data, allows to

fetch the getInterestDue for every user, liquidate funds

Imports

Bank has following imports:

• import "./token/RUSD.sol";

• import "./interfaces/ramp/IPriceOracle.sol";

• import "./strategies/BaseStrategy.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/access/OwnableUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/utils/ReentrancyGuardUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/math/SafeMathUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/cryptography/ECDSAUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/access/AccessControlUpgradeable.sol";

• import "./libraries/PriceReceiver.sol";

• import "./libraries/RayMath.sol";

• import "./token/RToken.sol";

• import "./Vault.sol";

• import "./libraries/Helpers.sol";

Inheritance
Bank is Initializable, AccessControlUpgradeable, Helpers,
ReentrancyGuardUpgradeable, PriceReceiver

Usages

Bank contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

• using ECDSAUpgradeable for bytes32;

• using RayMath for uint256;

Structs

Bank contract has no data structures.

Enums

Bank contract has no enums.

Events

Bank contract has no events:

• TokenUpdated

• Borrow

• InterestChanged

• Repay

• Liquidated

• TokenAdded

Modifiers

Bank has following modifiers:

• onlyEOA

• onlyController

• onlyOperator

Fields

Bank contract has following fields and constants:

• uint256 internal constant SECONDS_PER_YEAR = 365 days;

• mapping(address => BankTokenInfo) public tokens;

• Vault vault;

• RUSD rUSD;

• address treasury;

Functions

Bank has following public functions:

• borrow

• getInterestRate

• getRepayQuote

• getInterestDue

• getMinCollateralRatio

• getPriceFromOracle

• getInterestFromOracle

• repay

• liquidate

• getBorrowed

• getMaxBorrowable

• isLiquidatable

• setMinCollateralRatio

• setMintCapacity

• setLiquidationRatio

• setOracle

• setTreasury

• addToken

• updateToken

• setPriceSigner

• initializeController

BankV2.sol

Description

Allows user to borrow rUSD, to repay the borrowed rUSD, prices can come from

Oracles or from our own offchain oracle that provides signed data, allows to

fetch the getInterestDue for every user, liquidate funds

Imports

BankV2 has following imports:

• import "./token/RUSD.sol";

• import "./interfaces/ramp/IPriceOracle.sol";

• import "./strategies/BaseStrategy.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/access/OwnableUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/utils/ReentrancyGuardUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/cryptography/ECDSAUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/access/AccessControlUpgradeable.sol";

• import "./libraries/PriceReceiver.sol";

• import "./libraries/RayMath.sol";

• import "./token/RToken.sol";

• import "./Vault.sol";

• import "./libraries/Helpers.sol";

Inheritance
BankV2 is Initializable, AccessControlUpgradeable, Helpers,
ReentrancyGuardUpgradeable, PriceReceiver

Usages

BankV2 contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

• using ECDSAUpgradeable for bytes32;

• using RayMath for uint256;

Structs

BankV2 contract has no data structures.

Enums

BankV2 contract has no enums.

Events

BankV2 contract has no events:

• TokenStatusUpdated

• Borrow

• InterestChanged

• Repay

• Liquidated

• TokenAdded

Modifiers

BankV2 has following modifiers:

• onlyEOA

• onlyController

• onlyOperator

Fields

BankV2 contract has following fields and constants:

• uint256 internal constant SECONDS_PER_YEAR = 365 days;

• mapping(address => BankTokenInfo) public tokens;

• Vault vault;

• RUSD rUSD;

• address treasury;

Functions

BankV2 has following public functions:

• borrow

• getInterestRate

• getRepayQuote

• getInterestDue

• getMinCollateralRatio

• getPriceFromOracle

• getInterestFromOracle

• repay

• liquidate

• getBorrowed

• getMaxBorrowable

• isLiquidatable

• setMinCollateralRatio

• setMintCapacity

• setLiquidationRatio

• setOracle

• setTreasury

• addToken

• updateTokenStatus

• setPriceSigner

BonusPool.sol

Description

Allow the distribution of additional RAMP rewards to users who staked rTOKENs
into rMINT

Imports

BonusPool has following imports:

• "./dependencies/openzeppelin/contracts/math/SafeMath.sol";

• "./dependencies/openzeppelin/contracts/token/ERC20/SafeERC20.sol";

• "hardhat/console.sol";

• "./dependencies/openzeppelin/contracts-
upgradeable/access/AccessControlUpgradeable.sol";

Inheritance
BonusPool is AccessControlUpgradeable

Usages

BonusPool contract has following usages:

• using SafeMath for uint256;

• using SafeERC20 for IERC20;

Structs

BonusPool contract has following data structures:

• PoolInfo

• UserInfo

Enums

BonusPool contract has no enums.

Events

BonusPool contract has no events:

• Claimed

• EmergencyWithdraw

Modifiers

BonusPool has following modifiers:

• onlyOperator

• onlyVault

Fields

BonusPool contract has following fields and constants:

• bytes32 public constant VAULT_ROLE = keccak256("VAULT_ROLE");

• bytes32 public constant OPERATOR_ROLE =
keccak256("OPERATOR_ROLE");

• uint256 constant UNITS = 10e18;

• mapping(address => mapping(address => UserInfo)) public userInfo;

• IERC20 public rewardToken;

• address public farmingWallet;

• address public devAddress;

• mapping(address => PoolInfo) public poolInfo;

• uint256 public totalRewardsPerBlock;

• uint256 public startBlock;

Functions

BonusPool has following public functions:

• initialize

• add

• setRewardsPerBlock

• updateRewards

• updatePoolUser

• getReward

• claimReward

• getPoolReward

• setDevAddress

Vault.sol

Description

Provide ability to deposit and withdraw funds to strategies and basic funds
management functionality.

Imports

Vault has following imports:

• import "./token/RUSD.sol";

• import "./strategies/BaseStrategy.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/utils/ReentrancyGuardUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/cryptography/ECDSAUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/access/AccessControlUpgradeable.sol";

• import "./libraries/RayMath.sol";

• import "./token/RToken.sol";

• import "./libraries/PriceReceiver.sol";

• import "./libraries/Helpers.sol";

• import "./Bank.sol";

• import "./interfaces/ramp/IPriceInfo.sol";

• import "./BonusPool.sol";

• import "./controllers/Controller.sol";

• import "hardhat/console.sol";

Inheritance
Vault is ERC677Receiver, AccessControlUpgradeable,
ReentrancyGuardUpgradeable, Helpers, PriceReceiver

Usages

Vault contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

• using ECDSAUpgradeable for bytes32;

• using RayMath for uint256;

Structs

Vault contract has following data structures:

• WithdrawVariables

Enums

Vault contract has no enums.

Events

Vault contract has no events:

• TokenUpdated

• Withdraw

• TokenAdded

• WithdrawLiquidated

• Staked

• Unstaked

• Deposit

Modifiers

Vault has following modifiers:

• onlyBank

• onlyController

• onlyOperator

• onlyEOA

Fields

Vault contract has following fields and constants:

• uint256 internal constant SECONDS_PER_YEAR = 365 days;

• uint256 internal constant BONUSPOOL_DEFAULT_REWARDPERBLOCK =
0;

• RUSD rUSD;

• Bank bank;

• BonusPool bonusPool;

• address public controller;

• address public treasury;

• mapping(address => VaultTokenInfo) public tokens;

Functions

Vault has following public functions:

• initialize

• initializeBank

• initializeController

• onTokenTransfer

• deposit

• getCollateralizableRToken

• withdraw

• onRepay

• onLiquidate

• getMaxWithdrawable

• recallFromStrategy

• reinvestStrategy

• getAssetForRToken

• getAssetBalance

• getRTokenBalance

• getPoolBalance

• withdrawLiquidated

• getStrategyPoolSize

• stake

• unstake

• getMaxUnstakeable

• _unstake

• addToken

• updateToken

• tokenExists

• getToken

• setPriceSigner

• setBonusPool

• setTreasury

VaultV2.sol

Description

Provide ability to deposit and withdraw funds to strategies and basic funds
management functionality.

Imports

VaultV2 has following imports:

• import "./token/RUSD.sol";

• import "./strategies/BaseStrategy.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/utils/ReentrancyGuardUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-

upgradeable/math/SafeMathUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/token/ERC20/SafeERC20Upgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/cryptography/ECDSAUpgradeable.sol";

• import "./dependencies/openzeppelin/contracts-
upgradeable/access/AccessControlUpgradeable.sol";

• import "./libraries/RayMath.sol";

• import "./token/RToken.sol";

• import "./libraries/PriceReceiver.sol";

• import "./libraries/Helpers.sol";

• import "./Bank.sol";

• import "./interfaces/ramp/IPriceInfo.sol";

• import "./BonusPool.sol";

• import "./controllers/Controller.sol";

• import "hardhat/console.sol";

Inheritance

VaultV2 is ERC677Receiver, AccessControlUpgradeable,
ReentrancyGuardUpgradeable, Helpers, PriceReceiver

Usages

VaultV2 contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

• using ECDSAUpgradeable for bytes32;

• using RayMath for uint256;

Structs

VaultV2 contract has following data structures:

• PoolInfo

• UserInfo

Enums

VaultV2 contract has no enums.

Events

VaultV2 contract has no events:

• TokenStatusUpdated

• Withdraw

• TokenAdded

• WithdrawLiquidated

• Staked

• Unstaked

• Deposit

Modifiers

VaultV2 has following modifiers:

• onlyBank

• onlyController

• onlyOperator

• onlyEOA

Fields

VaultV2 contract has following fields and constants:

• uint256 internal constant SECONDS_PER_YEAR = 365 days;

• uint256 internal constant BONUSPOOL_DEFAULT_REWARDPERBLOCK =
0;

• RUSD rUSD;

• Bank bank;

• BonusPool bonusPool;

• address public controller;

• address public treasury;

• mapping(address => VaultTokenInfo) public tokens;

Functions

VaultV2 has following public functions:

• initialize

• initializeBank

• initializeController

• onTokenTransfer

• deposit

• getCollateralizableRToken

• withdraw

• onRepay

• onLiquidate

• getMaxWithdrawable

• recallFromStrategy

• reinvestStrategy

• getAssetForRToken

• getAssetBalance

• getRTokenBalance

• getPoolBalance

• withdrawLiquidated

• getStrategyPoolSize

• stake

• unstake

• getMaxUnstakeable

• _unstake

• addToken

• updateToken

• tokenExists

• getToken

• setPriceSigner

• setBonusPool

• setTreasury

Audit overview

 Low

1. Bank.borrow and BankV2.borrow functions execute mint operations

before changing the total count of the token supply and before the

changing user account state in the contract. We strongly recommend you

execute mint operation after the accounting.

2. Vault.withdraw and VaultV2.withdraw functions execute funds transfer
operations before changing the funds accounting. We strongly
recommend you execute transfer operation after changing the funds sum
on the account.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 2 low issues during the audit.

Notice: The source code of the contracts does not contain critical issues, well
designed, and covered with tests. There are some minor issues about gas usage

and logical optimisation, but they have no influence for the contracts’ security.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

