

Customer: Argon Foundation
Date: May 25th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for Argon

Foundation - Second Review

Approved by Andrew Matiukhin | CTO Hacken OU

Type ERC20 Locker, Work Contracts
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Git
repository

https://github.com/Argon-Foundation/platform-
contracts/tree/8996d21499ede3f2eb36320ded9563f5467a0fa6

Timeline 14 MAY 2021 – 24 MAY 2021
Changelog 19 MAY 2021 – INITIAL AUDIT

24 MAY 2021 – SECOND REVIEW
25 MAY 2021 – THIRD REVIEW

https://github.com/Argon-Foundation/platform-contracts/tree/8996d21499ede3f2eb36320ded9563f5467a0fa6
https://github.com/Argon-Foundation/platform-contracts/tree/8996d21499ede3f2eb36320ded9563f5467a0fa6

Table of contents

Table of contents 3

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 11

Disclaimers 12

Introduction
Hacken OÜ (Consultant) was contracted by Argon Foundation (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of Customer's smart contract
and its code review conducted on May 24th, 2021.

Scope

The scope of the project is the smart contracts provided in the Git
repository:

https://github.com/Argon-Foundation/platform-
contracts/tree/8996d21499ede3f2eb36320ded9563f5467a0fa6
ArgonFreelancers.sol
liquidityLock.sol

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

https://github.com/Argon-Foundation/platform-contracts/tree/8996d21499ede3f2eb36320ded9563f5467a0fa6
https://github.com/Argon-Foundation/platform-contracts/tree/8996d21499ede3f2eb36320ded9563f5467a0fa6

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found 1 low and 6 informational issues during the first
review.

Security engineers found 1 informational issue during the second review.

Security engineers found no issues during the second review.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Graph 2. The distribution of vulnerabilities after the second review.

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview

 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

No Medium severity issues were found.

 Low

1. Vulnerability: Unused contract

Contract ApproveAndCallFallBack defined in the ArgonFreelancers.sol
is never used.

Fixed before second review

 Lowest / Code style / Best Practice

1. Vulnerability: Incorrect version of solidity

Contract could not be built with solidity version 0.4.17 which, but
should work starting the 0.4.24.

Recommendation: Please use recommended solidity versions to deploy

- 0.5.16 - 0.5.17
- 0.6.11 - 0.6.12
- 0.7.5 - 0.7.6

Fixed before second review

2. Vulnerability: Naming convention

 Solidity defines a naming convention that should be followed.

 Fixed before second review

3. Vulnerability: Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

 Fixed before second review

https://solidity.readthedocs.io/en/v0.4.24/style-guide.html#naming-conventions

4. Vulnerability: Costly operations inside a loop

Decrementing the state variable in a loop incurs a lot of gas
because of expensive SSTOREs, which might lead to an out-of-gas
exception.

Recommendation: Please consider using a local variable to hold the
loop computation result.

Fixed before third review

5. Vulnerability: Too many digits

Literals with many digits are difficult to read and review. Please
consider using ether units and/or scientific notation and/or dashes
as separators instead.

Recommendation:

- replace 5000000000000000000000000 to 5e6 ether or 5_000_000
ether

- replace 1000000 to 1e6 or 1_000_000

Fixed before second review

6. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Fixed before second review

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 1 low and 6 informational issues during the first
review.

Security engineers found 1 informational issue during the second review.

Security engineers found no issues during the second review.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

