

Customer: Bunicorndefi
Date: May 03th, 2021

	

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for

Bunicorndefi
Approved by Andrew Matiukhin | CTO Hacken OU
Type Token, Governance, TimeLock, Defi
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/bunicorndefi/farming

https://github.com/bunicorndefi/stablecoin_swap

Commit
Deployed
contract

Timeline 21 APR 2021 – 26 APR 2021
Changelog 26 APR 2021 – INITIAL AUDIT

03 MAY – SECONDARY AUDIT	

Table of contents

Introduction ... 4	

Scope .. 4	

Executive Summary .. 5	

Severity Definitions ... 7	

AS-IS overview ... 8	

Conclusion .. 19	

Disclaimers ... 20	

	 	

Introduction

Hacken OÜ (Consultant) was contracted by Bunicorndefi (Customer)
to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
April 21th, 2021 – April 26th, 2021.

The secondary review conducted on May 03th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
File:

BuniToken.sol
MasterChef.sol
VBuniToken.sol
BuniCornFactory.sol
BuniCornRouter02.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item
Code review § Reentrancy

§ Ownership Takeover
§ Timestamp Dependence
§ Gas Limit and Loops
§ DoS with (Unexpected) Throw
§ DoS with Block Gas Limit
§ Transaction-Ordering Dependence
§ Style guide violation
§ Costly Loop
§ ERC20 API violation
§ Unchecked external call
§ Unchecked math
§ Unsafe type inference
§ Implicit visibility level
§ Deployment Consistency
§ Repository Consistency
§ Data Consistency

Functional review § Business Logics Review
§ Functionality Checks
§ Access Control & Authorization
§ Escrow manipulation
§ Token Supply manipulation
§ Assets integrity
§ User Balances manipulation
§ Kill-Switch Mechanism
§ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.	

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 high issue during the audit.

After the second review no vulnerabilities were found.

Notice: the audit scope is limited and not include all files in
the repository. Though, reviewed contracts are secure, we may not
guarantee secureness of contracts that are not in the scope.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the first review.

	

high
100%

high

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

	

AS-IS overview

BuniToken.sol

Description

BuniToken token with governance.

Imports

BuniToken has following imports:

• BEP20.sol

Inheritance

BuniToken inherit:

• BEP20

Usages

BuniToken contract has no usages.

Structs

BuniToken contract has following data structures:

• Checkpoint

Enums

BuniToken contract has no enums.

Events

BuniToken contract has following events:

• DelegateChanged

• DelegateVotesChanged

Modifiers

BuniToken has no modifiers.

Fields

BuniToken contract has following fields and constants:

• mapping (address => address) internal _delegates;

• mapping (address => mapping (uint32 => Checkpoint)) public
checkpoints;

• mapping (address => uint32) public numCheckpoints;
• bytes32 public constant DOMAIN_TYPEHASH =

keccak256(EIP712Domain(string name,uint256 chainId,address
verifyingContract));

• bytes32 public constant DELEGATION_TYPEHASH =
keccak256(Delegation(address delegatee,uint256
nonce,uint256 expiry));

• mapping (address => uint) public nonces;

Functions
BuniToken has following public functions:

• mint

• delegates

• delegate

• delegateBySig

• getCurrentVotes

• getPriorVotes

MasterChef.sol

Description

MasterChef is a liquidity pool with rewards.

Imports

MasterChef has following imports:

• SafeMath.sol
• IBEP20.sol
• SafeBEP20.sol
• Ownable.sol
• interfaces/IERC721.sol
• BuniToken.sol

Inheritance

MasterChef is Ownable.

Usages

MasterChef contract has following usages:

• SafeMath for uint256
• SafeBEP20 for IBEP20

Structs

MasterChef contract has following data structures:

• UserInfo
• PoolInfo

Enums

MasterChef contract has no enums.

Events

MasterChef contract has following events:

• Deposit
• Withdraw
• Harvest
• Vesting
• EmergencyWithdraw

Modifiers

MasterChef has no custom modifiers.

Fields

MasterChef contract has following fields and constants:

• BuniToken public buni;

• IERC721 public vBuni;

• address public devaddr;

• uint256 public buniPerBlock;

• uint256 public BONUS_MULTIPLIER = 1;

• IMigratorChef public migrator;

• PoolInfo[] public poolInfo;

• mapping (uint256 => mapping (address => UserInfo)) public
userInfo;

• uint256 public totalAllocPoint = 0;

• uint256 public startBlock;

• uint256 public platformFeeRate = 10;

• uint256 public withdrawDecimals = 3;

• uint256 public vestTimeLock = 30 days;

• uint256 public penaltyTime = 7 days;

• mapping (uint256 => mapping(address => uint256))
unclaimedBuni;

Functions
MasterChef has following public functions:

• constructor

• poolLength

• getMultiplier

• pendingBuni

• getWithdrawFee

• updateMultiplier

• add

• set

• setMigrator

• setTimeLock

• setPenaltyTime

• migrate

• massUpdatePools

• updatePool

• deposit

• withdraw

• harvest

• dev

• redeemBuni

• redeemBatchBuni

VBuniToken.sol
Description

VBuniToken is a token with ability for holders to burn (destroy)
their tokens, a minter role that allows for token minting,
a pauser role that allows to stop all token transfers, token ID
and URI autogeneration.

Imports

VBuniToken contract has following imports:

• @openzeppelin/contracts/access/AccessControl.sol;

• @openzeppelin/contracts/utils/Context.sol;

• @openzeppelin/contracts/utils/Counters.sol;

• @openzeppelin/contracts/token/ERC721/ERC721.sol;

• @openzeppelin/contracts/token/ERC721/ERC721Burnable.sol;

• @openzeppelin/contracts/token/ERC721/ERC721Pausable.sol;

Inheritance

VBuniToken contract is:

• Context,

• AccessControl,

• ERC721Burnable,

• ERC721Pausable
Usages

VBuniToken contract has following custom usages:

• Counters for Counters.Counter;

Structs

VBuniToken contract has following data structures:

• TokenInfo.

Enums

VBuniToken contract has no custom enums.

Events

VBuniToken contract has no custom evets.

Modifiers

VBuniToken has no custom modifiers.

Fields

VBuniToken contract has following fields and constants:

• bytes32 public constant MINTER_ROLE =
keccak256(MINTER_ROLE);

• bytes32 public constant PAUSER_ROLE =
keccak256(PAUSER_ROLE);

• mapping(uint256 => TokenInfo) public vestedData;

• Counters.Counter private _tokenIdTracker;

Functions

VBuniToken has following public functions:

• constructor

• getTokenInfo

• mint

• pause

• unpause

• setBaseURI

• getTokenInfoOfOwnerByIndex

BuniCornFactory.sol

Description

BuniCornFactory

Imports

BuniCornFactory contract has following imports:

• @openzeppelin/contracts/access/Ownable.sol;

• @openzeppelin/contracts/utils/EnumerableSet.sol;

• ./interfaces/IBuniCornFactory.sol;

• ./BuniCornPool.sol;

Inheritance

BuniCornFactory contract is:

• Ownable,

• IBuniCornFactory

Usages

BuniCornFactory contract has following custom usages:

• EnumerableSet for EnumerableSet.AddressSet;

Structs

BuniCornFactory contract has no custom data structures

Enums

BuniCornFactory contract has no custom enums.

Events

BuniCornFactory contract has following custom evets:

• PoolCreated

• SetFeeConfiguration

• SetFeeToSetter

Modifiers

BuniCornFactory has no custom modifiers.

Fields

BuniCornFactory contract has following fields and constants:

• uint256 internal constant BPS = 10000;

• address private feeTo;

• uint16 private governmentFeeBps;

• address public override feeToSetter;

• mapping(IERC20 => mapping(IERC20 =>
EnumerableSet.AddressSet)) internal tokenPools;

• mapping(IERC20 => mapping(IERC20 => address)) public
override getUnamplifiedPool;

• address[] public override allPools;

• address public routerAddress;

Functions

BuniCornFactory has following public functions:

• constructor

• setRouter

• createPool

• setFeeConfiguration

• setFeeToSetter

• getFeeConfiguration

• allPoolsLength

• getPools

• getPoolsLength

• getPoolAtIndex

• isPool

BuniCornRouter02.sol

Description

BuniCornRouter02

Imports

BuniCornRouter02 contract has following imports:

• @uniswap/lib/contracts/libraries/TransferHelper.sol;

• @openzeppelin/contracts/access/Ownable.sol;

• @openzeppelin/contracts/math/SafeMath.sol;

• @openzeppelin/contracts/token/ERC20/SafeERC20.sol;

• ../interfaces/IBuniCornFactory.sol;

• ../interfaces/IBuniCornRouter02.sol;

• ../interfaces/IERC20Permit.sol;

• ../interfaces/IBuniCornPool.sol;

• ../interfaces/IWETH.sol;

• ../libraries/BuniCornLibrary.sol;

Inheritance

BuniCornRouter02 contract is:

• Ownable

• IBuniCornRouter02,

Usages

BuniCornRouter02 contract has following custom usages:

• using SafeERC20 for IERC20;

• using SafeERC20 for IWETH;

• using SafeMath for uint256;
Structs

BuniCornRouter02 contract has no custom data structures

Enums

BuniCornRouter02 contract has no custom enums.

Events

BuniCornRouter02 contract has no custom evets.

Modifiers

BuniCornRouter02 has following custom modifiers:

• ensure

Fields

BuniCornRouter02 contract has following fields and constants:

• uint256 internal constant BPS = 10000;

• address public immutable override factory;

• IWETH public immutable override weth;

Functions

BuniCornRouter02 has following public functions:

• constructor

• receive

• addLiquidity

• addLiquidityETH

• addLiquidityNewPool

• addLiquidityNewPoolETH

• removeLiquidity

• removeLiquidityETH

• removeLiquidityWithPermit

• removeLiquidityETHWithPermit

• removeLiquidityETHSupportingFeeOnTransferTokens

• removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

• swapExactTokensForTokens

• swapTokensForExactTokens

• swapExactETHForTokens

• swapTokensForExactETH

• swapExactTokensForETH

• swapETHForExactTokens

• swapExactTokensForTokensSupportingFeeOnTransferTokens

• swapExactETHForTokensSupportingFeeOnTransferTokens

• swapExactTokensForETHSupportingFeeOnTransferTokens

• quote

• getAmountsOut

• getAmountsIn

	

Audit overview
 Critical

No critical issues were found.

 High

BuniCornRouter02.sol has a public function removeLiquidityETH which
has no msg.sender validation and can send funds to any address
received in function params.

Fixed before the second audit.

 Medium

No medium issues were found.

 Low

No low severity issues were found.

 Lowest / Code style / Best Practice

No lowest severity issues were found.

	

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 1 high issue during the audit.

After the second review no vulnerabilities were found.

Notice: the audit scope is limited and not include all files in
the repository. Though, reviewed contracts are secure, we may not
guarantee secureness of contracts that are not in the scope.

	

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

