

Customer: Etherlite
Date: June 1st, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for

Etherlite - Third Review

Approved by Andrew Matiukhin | CTO Hacken OU

Type Platform bridge with staking and rewards
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Git commit https://github.com/etherlite-org/pos-

contracts/tree/25a1ed239d4fc1bee2069c1c811f81ec70ef8296/contracts
Timeline 20 MAY 2021 – 28 MAY 2021
Changelog 27 MAY 2021 – INITIAL AUDIT

28 MAY 2021 – SECOND REVIEW
1 JUNE 2021 – THIRD REVIEW

https://github.com/etherlite-org/pos-contracts/tree/25a1ed239d4fc1bee2069c1c811f81ec70ef8296/contracts
https://github.com/etherlite-org/pos-contracts/tree/25a1ed239d4fc1bee2069c1c811f81ec70ef8296/contracts

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 13

Disclaimers 14

Introduction
Hacken OÜ (Consultant) was contracted by Etherlite (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its
code review conducted on June 1st, 2021.

Scope
The scope of the project is the smart contracts provided in the Git commit:

https://github.com/etherlite-org/pos-
contracts/tree/25a1ed239d4fc1bee2069c1c811f81ec70ef8296/contracts

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

https://github.com/etherlite-org/pos-contracts/tree/25a1ed239d4fc1bee2069c1c811f81ec70ef8296/contracts
https://github.com/etherlite-org/pos-contracts/tree/25a1ed239d4fc1bee2069c1c811f81ec70ef8296/contracts

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary
According to the assessment, the Customer's smart contracts are well-secured

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found 1 medium, 1 low and 3 informational issues during
the first review.

Security engineers found 1 low and 3 informational issues during the second
review.

Security engineers found 2 informational issues during the third review.

Graph 1. The distribution of vulnerabilities after the first review.

Graph 2. The distribution of vulnerabilities after the second review.

Insecure Poor secured Secured Well-secured

You are here

Graph 3. The distribution of vulnerabilities after the third review.

Severity Definitions
Risk Level Description
Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview
 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

1. Vulnerability: Unused return

The return value of the call to mint function is not used in the
function logic.

Fixed before second review

 Low

1. Vulnerability: Unused function parameter

Function parameter uint256 _value is not being used, also the
function does not override any other virtual function.

Fixed before third review

 Lowest / Code style / Best Practice

1. Vulnerability: Too many digits

Literals with many digits are difficult to read and review.

Recommendation: Please consider using ether units and/or scientific
notation and/or separate with dashes

ex:

- 1_000_000
- 1e6
- 3.75 finney
- 3750 szabo

Lines: base/BlockRewardAuRaBase.sol#564

uint256 internal constant REWARD_PERCENT_MULTIPLIER = 1000000;

Lines: base/BlockRewardAuRaCoins.sol#16

uint256 public constant NATIVE_COIN_INFLATION_RATE = 3750000000000000;

Lines: TxPermission.sol#39

uint256 public constant BLOCK_GAS_LIMIT = 12500000;

Lines: TxPermission.sol#43

uint256 public constant BLOCK_GAS_LIMIT_REDUCED = 4000000;

2. Vulnerability: Unused state variable

Internal constants CREATE and PRIVATE aren’t used anywhere through
the code

Fixed before third review

3. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Lines: base/BlockRewardAuRaBase.sol#354

function epochsPoolGotRewardFor(address _miningAddress) public view

returns(uint256[] memory) {

Lines: base/BlockRewardAuRaBase.sol#375

function onTokenTransfer(address, uint256, bytes memory) public pure

returns(bool) {

Lines: base/BlockRewardAuRaBase.sol#383-386

function epochsToClaimRewardFrom(

 address _poolStakingAddress,

 address _staker

) public view returns(uint256[] memory epochsToClaimFrom) {

Lines: base/BlockRewardAuRaBase.sol#439

function validatorRewardPercent(address _stakingAddress) public view

returns(uint256) {

Lines: RandomAuRa.sol#225

function getCipher(uint256 _collectRound, address _miningAddress)

public view returns(bytes memory) {

Lines: RandomAuRa.sol#241-244

function getCommitAndCipher(

 uint256 _collectRound,

 address _miningAddress

) public view returns(bytes32, bytes memory) {

Lines: RandomAuRa.sol#299

function nextCommitPhaseStartBlock() public view returns(uint256) {

Lines: RandomAuRa.sol#304

function nextRevealPhaseStartBlock() public view returns(uint256) {

Lines: RandomAuRa.sol#326

function revealSecretCallable(address _miningAddress, uint256 _number)

public view returns(bool) {

Lines: base/StakingAuRaBase.sol#381

function initialValidatorStake(uint256 _totalAmount) public onlyOwner {

Lines: base/StakingAuRaBase.sol#796

function poolDelegators(address _poolStakingAddress) public view

returns(address[] memory) {

Lines: base/StakingAuRaBase.sol#804

function poolDelegatorsInactive(address _poolStakingAddress) public

view returns(address[] memory) {

Lines: base/StakingAuRaBase.sol#822

function stakingEpochEndBlock() public view returns(uint256) {

Lines: base/StakingAuRaCoins.sol#184

function transferStakingAmount(uint256 _totalAmount) public payable{

Lines: TxPermission.sol#81

function addAllowedSender(address _sender) public onlyOwner

onlyInitialized {

Lines: TxPermission.sol#89

function removeAllowedSender(address _sender) public onlyOwner

onlyInitialized {

Lines: TxPermission.sol#113

function contractNameHash() public pure returns(bytes32) {

Lines: TxPermission.sol#118

function contractVersion() public pure returns(uint256) {

Lines: TxPermission.sol#125

function allowedSenders() public view returns(address[] memory) {

Lines: TxPermission.sol#145-155

function allowedTxTypes(

 address _sender,

 address _to,

 uint256 _value,

 uint256 _gasPrice,

 bytes memory _data

)

 public

 view

 returns(uint32 typesMask, bool cache)

{

Lines: TxPermission.sol#232

function blockGasLimit() public view returns(uint256) {

Lines: TxPriority.sol#55

function transferOwnership(address _newOwner) public onlyOwner {

Conclusion
Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 1 medium, 1 low and 3 informational issues during
the first review.

Security engineers found 1 low and 3 informational issues during the second
review.

Security engineers found 2 informational issues during the third review.

Category Check Items Comments
➔ Code Review ➔ Gas Savings ➔ Public function that

could be declared
external

➔ Style guide violation ➔ Too many digits

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

