

Customer: HAKA
Date: June 16th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for HAKA -
Second Review

Approved by Andrew Matiukhin | CTO Hacken OU

Type ERC20 Token
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Solidity
flattened

TribeOneBEP20.txt (md5: e83caf962b19e091731939a1dbdf90d7)

Timeline 03 JUNE 2021 – 16 JUNE 2021
Changelog 04 JUNE 2021 – INITIAL AUDIT

16 JUNE 2021 – SECOND REVIEW

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

Introduction

Hacken OÜ (Consultant) was contracted by HAKA (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of Customer's smart contract and its code review
conducted on June 4th, 2021.

Scope

The scope of the project is the smart contracts in the flattened solidity
file:

TribeOneBEP20.txt (md5: e83caf962b19e091731939a1dbdf90d7)

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency
Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found no issues during the first review.

Security engineers found 1 informational issue during the second review.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview

 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

No Medium severity issues were found.

 Low

No Low severity issues were found.

 Lowest / Code style / Best Practice

1. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Lines: TribeOneBEP20.sol#319

function balanceOf(address account) public view returns (uint256) {

Lines: TribeOneBEP20.sol#339

function allowance(address owner, address spender) public view returns

(uint256) {

Lines: TribeOneBEP20.sol#528

function name() public view returns (string memory) {

Lines: TribeOneBEP20.sol#536

function symbol() public view returns (string memory) {

Lines: TribeOneBEP20.sol#552

function decimals() public view returns (uint8) {

Lines: TribeOneBEP20.sol#623

function addMinter(address account) public onlyMinter {

Lines: TribeOneBEP20.sol#627

function renounceMinter() public {

Lines: TribeOneBEP20.sol#662

function mint(address account, uint256 amount) public onlyMinter

returns (bool) {

Lines: TribeOneBEP20.sol#685

function burn(uint256 amount) public {

Lines: TribeOneBEP20.sol#692

function burnFrom(address account, uint256 amount) public {

Lines: TribeOneBEP20.sol#724

function addPauser(address account) public onlyPauser {

Lines: TribeOneBEP20.sol#728

function renouncePauser() public {

Lines: TribeOneBEP20.sol#782

function paused() public view returns (bool) {

Lines: TribeOneBEP20.sol#805

function pause() public onlyPauser whenNotPaused {

Lines: TribeOneBEP20.sol#813

function unpause() public onlyPauser whenPaused {

Lines: TribeOneBEP20.sol#885

function owner() public view returns (address) {

Lines: TribeOneBEP20.sol#911

function renounceOwnership() public onlyOwner {

Lines: TribeOneBEP20.sol#920

function transferOwnership(address newOwner) public onlyOwner {

Lines: TribeOneBEP20.sol#957

function cap() public view returns (uint256) {

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found no issues during the first review.

Security engineers found 1 informational issue during the second review.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

