

Customer: TosDis
Date: January 19th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
TosDis Finance

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token sale contract
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/tosdis/Contracts/blob/main/ITOPool.sol
Commit
Deployed
contract

Timeline 19 JAN 2021
Changelog 19 JAN 2021 – INITIAL AUDIT

19 JAN 2021 – REMEDIATION CHECK
20 JAN 2021 – REMEDIATION CHECK

https://github.com/tosdis/Contracts/blob/main/ITOPool.sol

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 7

AS-IS overview.. 8

Conclusion... 13

Disclaimers.. 14

Introduction

Hacken OÜ (Consultant) was contracted by TosDis Finance (Customer)
to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of
Customer's smart contract and its code review conducted on January
19th, 2021.

Remediation Check conducted - Jan 19th, 2021
Remediation Check conducted - Jan 20th, 2021

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
Commit
Files:

ITOPool.sol
(b5d8da0cf1f4c310bcc3a3d0853fac0e7b125c52c6d8084df70c61b96ec3d5a6)
We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secure and can be used in production.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

After the first review, Customers` smart contracts contained 1
high and 1 low severity issue.

Graph 1. Distribution of vulnerabilities after the first review.

High
50%

Low
50%

High Low

Insecure Poor secured Secured Well-secured

You are

here

After the second review, Customers` smart contracts contains 1
high and 1 low severity issue.

Graph 2. Distribution of vulnerabilities after the second review.

After the third review, Customers` smart contracts do not contain
vulnerabilities.

Notice for the contract users: before using the contract ensure
that all parameters are set correctly, and the contract has at
least `maxDistributedTokenAmount / tokenPrice * 10^decimals` of
tokens on its balance.

High
50%

Low
50%

High Low

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

ITOPool.sol

Description

ITOPool is a token sale contract.

Imports

ITOPool contract has following imports:

• openzeppelin/contracts/access/Ownable.sol
• openzeppelin/contracts/utils/ReentrancyGuard.sol
• openzeppelin/contracts/math/SafeMath.sol
• openzeppelin/contracts/token/ERC20/SafeERC20.sol
• openzeppelin/contracts/token/ERC20/ERC20.sol

Inheritance

ITOPool contract is Ownable, ReentrancyGuard.

Usages

ITOPool contract has the following custom usages:

• SafeMath for uint256
• SafeERC20 for ERC20

Structs

ITOPool contract has following data structures:

• UserInfo

Enums

ITOPool contract has no custom enums.

Events

ITOPool contract has the following events:

• UpdatedSettings
• TokensDebt
• TokensWithdrawn

Modifiers

ITOPool has no custom modifiers.

Fields

ITOPool contract has following fields and constants:

• uint256 public tokenPrice
• ERC20 public rewardToken
• uint256 public decimals
• uint256 public startTimestamp
• uint256 public finishTimestamp
• uint256 public startClaimTimestamp
• uint256 public minEthPayment
• uint256 public maxEthPayment
• uint256 public maxDistributedTokenAmount
• uint256 public tokensForDistribution
• uint256 public distributedTokens
• mapping(address => UserInfo) public userInfo;

Functions

ITOPool has following public functions:

• constructor
Description
Sets default parameters of the contract.
Visibility
public
Input parameters

o uint256 _tokenPrice
o ERC20 _rewardToken
o uint256 _startTimestamp
o uint256 _finishTimestamp
o uint256 _startClaimTimestamp
o uint256 _minEthPayment
o uint256 _maxEthPayment
o uint256 _maxDistributedTokenAmount

Constraints
o Start timestamp must be less than finish timestamp.
o Finish timestamp must be more than current block.

Events emit
None
Output
None

• pay
Description
Pay ETH in exchange to tokens. Tokens withdrawal will be

available after `startClaimTimestamp` is reached.

Visibility
payable external
Input parameters
None
Constraints

o msg.value should be between `minEthPayment` and
`maxEthPayment`.

o Current timestamp should be between `startTimestamp`
and `finishTimestamp`

o Total purchase sum should not exceed the
`maxEthPayment`.

Events emit
Emits the `TokensDebt` event.
Output
None

• claimFor
Description
Claims tokens on behalf of a `_user`.
Visibility
external
Input parameters

o address _user
Constraints

o Can only be called after the `startClaimTimestamp` is
reached.

Events emit
Emits the `TokensWithdrawn` event.
Output
None

• claim
Description
Claims tokens on behalf of a message sender.
Visibility
external
Input parameters
None
Constraints

o Can only be called after the `startClaimTimestamp` is
reached.

Events emit
Emits the `TokensWithdrawn` event.
Output
None

• withdrawETH
Description
Withdraw an `amount` of eth.

Visibility
external
Input parameters

o uint256 amount
Constraints

o Can only be called by the owner.
Events emit
None
Output
None

• withdrawNotSoldTokens
Description
Withdraw all unsold tokens.
Visibility
external
Input parameters

o uint256 amount
Constraints

o Can only be called by the owner.
o `finishTimestamp` should be reached.

Events emit
None
Output
None

• setFinishTimestamp, setStartClaimTimestamp,
setMaxDistributedTokenAmount
Description
Setter functions. Can only be used by the owner.
All functions were removed.

Audit overview
 Critical

No critical issues were found.

 High

1. setStartClaimTimestamp can be used by owners to change the
`startClaimTimestamp` value. As a result, customers who
already purchased tokens may not receive them when they
expect to.

Fixed before the second review. The function was removed.

2. setFinishTimestamp can be used by owners to change the `
finishTimestamp ` value. This allows to transfer unsold
tokens at any time. As a result, customers who already
purchased tokens may not receive them when they expect to.

Fixed before the second review. The function was removed.

 Medium

No medium severity issues were found.

 Low

1. Usage of the `ReentrancyGuard` is redundant..

Fixed before the second review.

 Lowest / Code style / Best Practice

No informational issues were found.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

After the first review, Customers` smart contracts contained 1
high and 1 low severity issue.

After the second review, Customers` smart contracts contains 1
low severity issue.

After the third review, Customers` smart contracts contains 1 low
severity issue.

Notice for the contract users: before using the contract ensure
that all parameters are set correctly, and the contract has at
least `maxDistributedTokenAmount / tokenPrice * 10^decimals` of
tokens on its balance.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

