

Customer: Mogul
Date: April 23rd, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Mogul -
Second Review

Approved by Andrew Matiukhin | CTO Hacken OU

Type NFT with Marketplace
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Zip-archive https://github.com/mogulproductions/nft-marketplace-

contracts/commit/f04607c827b9c1eac2066f00bc369ad4bea3860f
Timeline 20 APRIL 2021 – 23 APRIL 2021
Changelog 21 APRIL 2021 – INITIAL AUDIT

23 APRIL 2021 – SECOND REVIEW

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

AS-IS overview 8

Audit overview 16

Conclusion 18

Disclaimers 19

Introduction

Hacken OÜ (Consultant) was contracted by Mogul (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of Customer's smart contract and its code review
conducted on April 23rd, 2021.

Scope

The scope of the project is the following solidity contracts:
https://github.com/mogulproductions/nft-marketplace-
contracts/commit/f04607c827b9c1eac2066f00bc369ad4bea3860f
contracts/MogulMarketplace.sol (md5:e63885915a4c7de50a9eebd07b180c7a)
contracts/MogulNFT.sol (md5:c0da89f5e3fd17d52c377b651295508a)

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contract is well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. A general overview is presented in AS-IS
section, and all found issues can be found in the Audit overview section.

Security engineers found 1 high, 3 Low and 3 informational issues during the
first review.

Security engineers found no issues during the second review.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

MogulMarketplace.sol

Description
MogulMarketplace is a contract for NFT Marketplace.

Imports
MogulMarketplace has following imports:

● import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol"
● import "@openzeppelin/contracts/token/ERC20/IERC20.sol"
● import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"
● import "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol"
● import "@openzeppelin/contracts/access/AccessControl.sol"
● import "@openzeppelin/contracts/utils/math/SafeMath.sol"
● import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"
● import "@openzeppelin/contracts/security/ReentrancyGuard.sol"
● import "@chainlink/contracts/src/v0.6/interfaces/AggregatorV3Interface.sol"

Inheritance
MogulMarketplace is ERC1155Holder, AccessControl and ReentrancyGuard

Usages
MogulMarketplace has following usages:

● EnumerableSet for EnumerableSet.UintSet
● SafeERC20 for IERC20
● SafeMath for uint256

Structs
MogulMarketplace has following structures:

● Listing — stores marketplace listing info
● Auction — stores auction info
● Bid — stores auction bid info

Enums
MogulMarketplace has no enums

Events
MogulMarketplace has following events:

● event ListingCreated(
 string label,
 address tokenAddress,
 uint256 tokenId,
 uint256 numTokens,

 uint256 price,
 bool isStarsListing);

● event Sale(address buyer, uint256 listingId, uint256 amount);
● event AuctionEnded(address winner, uint256 auctionId);
● event AuctionCancelled(uint256 auctionId);

Modifiers
MogulMarketplace has the following modifier:

● modifier onlyAdmin {
 require(hasRole(ROLE_ADMIN, msg.sender), "Sender is not admin");
 _;
}

Fields
MogulMarketplace has following fields and constants:

● AggregatorV3Interface priceOracle
● bytes32 public constant ROLE_ADMIN = keccak256("ROLE_ADMIN")
● address payable public treasuryWallet
● IERC20 stars
● uint256 nextListingId = 0
● mapping(uint256 => Listing) public listings
● EnumerableSet.UintSet private listingIds
● mapping(uint256 => Auction) public auctions
● EnumerableSet.UintSet private auctionIds

Functions
MogulMarketplace has following public and external functions

● constructor
Description
Initializes the contract. Assigns the ROLE_ADMIN role to the provided
_admin address. Stores provided _treasuryWallet address into the
treasuryWallet state variable. Stores provided starsAddress as IERC20 into
the stars state variable

Input parameters

○ address starsAddress
○ address _admin
○ address payable _treasuryWallet

Constraints
○ Protected by ReentrancyGuard
○ _treasuryWallet should not be zero-address

Events emit
Emits RoleGranted and RoleAdminChanged events.
Output
None

● setPriceOracle
Description
Stores provided priceOracleAddress as AggregatorV3Interface into the
priceOracle state variable

Input parameters

○ address priceOracleAddress
Constraints

○ onlyAdmin modifier used
Events emit
None
Output
None

● listTokens
Description
Creates a new listing

Input parameters

○ string memory label
○ address tokenAddress
○ uint256 tokenId
○ uint256 numTokens
○ uint256 price
○ bool isStarsListing

Constraints
○ onlyAdmin modifier used
○ Protected by ReentrancyGuard

Events emit
Emits ListingCreated event
Output
None

● removeListing
Description
Removes a listing

Input parameters

○ uint256 listingId
Constraints

○ onlyAdmin modifier used
Events emit
Emits ListingCreated event
Output
None

● buyTokens
Description
Buy a token. Payable function.

Input parameters

○ uint256 listingId
○ uint256 amount

Constraints
○ Protected by ReentrancyGuard
○ listingIds should contain provided listingId
○ listing.numTokens should be greater or equal to the provided amount
○ sent msg.value should be equal listing.price multiplied by the

provided amount in case of listing is not the stars listing
Events emit
Emits Sale event
Output
None

● startAuction
Description
Start an auction

Input parameters

○ string memory label
○ address tokenAddress
○ uint256 tokenId
○ uint256 numTokens
○ uint256 startingStarsPrice
○ uint256 startingEthPrice
○ uint256 startTime
○ uint256 endTime
○ bool allowStarsBids
○ bool allowEthBids

Constraints
○ onlyAdmin modifier used
○ Protected by ReentrancyGuard
○ allowStarsBids or allowEthBids should be true

Events emit
None
Output
None

● bid
Description
Send in a bid and refund the previous highest bidder. Payable function

Input parameters

○ uint256 auctionId
○ bool isStarsBid
○ uint256 amount

Constraints
○ Protected by ReentrancyGuard
○ auction should be already started
○ in case of starsBid: auction should have allowStarsBids set true
○ in case of starsBid: provided amount should be higher than

highestStarsBid and also be higher than auction’s startingStarsPrice
○ in case of not starsBid: auctions should have allowEthBids set true
○ in case of not starsBid: provided amount should be higher than

highestEthBid and also be higher than auction’s startingEthPrice
○ in case of not starsBid: provided amount should be equal to the sent

msg.value
Events emit
None
Output
None

● endAuctionWithoutOracle
Description
End auctions and reward the winner without needing a price Oracle. The
caller chooses whether the Stars bid or Ether bid was higher.

Input parameters

○ uint256 auctionId
○ bool didStarsBidWin

Constraints
○ Protected by ReentrancyGuard
○ onlyAdmin modifier used
○ auctionId should exist in the auctionIds
○ timestamp should be greater or equal to auction’s endTime
○ auction should have allowStarsBids set true if didStarsBidWin is

true or allowEthBids otherwise
Events emit
Emits AuctionEnded event
Output
None

● endAuction
Description
End auctions and reward the winner. If the auction supported both Stars and
eth bids, uses the oracle to determine who won

Input parameters

○ uint256 auctionId
Constraints

○ onlyAdmin modifier used
○ Protected by ReentrancyGuard
○ auctionId should exist in the auctionIds
○ timestamp should be greater or equal to auction’s endTime

Events emit
Emits AuctionEnded event
Output
None

● cancelAuction
Description
Cancel auction and refund bidders

Input parameters

○ uint256 auctionId
Constraints

○ onlyAdmin modifier used
○ Protected by ReentrancyGuard
○ auctionId should exist in the auctionIds

Events emit
Emits AuctionCancelled event
Output
None

● withdrawETH
Description
Withdraw ETH to treasury wallet

Input parameters
None
Constraints

○ onlyAdmin modifier used
○ should be no running auctions

Events emit
None
Output
None

● withdrawStars
Description
Withdraw Stars to treasury wallet

Input parameters
None
Constraints

○ onlyAdmin modifier used
○ should be no running auctions

Events emit

None
Output
None

● getStarsPrice, supportsInterface, getNumListings, getListingIds,
getListingAtIndex, getNumAuctions, getAuctionIds, getAuctionAtIndex,
Description
Simple View functions.

MogulNFT.sol

Description
MogulNFT is an ERC1155 contract

Imports
MogulNFT has following imports:

● import "@openzeppelin/contracts/token/ERC1155/ERC1155.sol"
● import "@openzeppelin/contracts/access/AccessControl.sol"

Inheritance
MogulNFT is ERC1155 and AccessControl

Usages
MogulNFT has no usages

Structs
MogulNFT has no structures

Enums
MogulNFT has no enums

Events
MogulNFT has no custom events

Modifiers
MogulNFT has the following modifier:

● modifier onlyAdmin {
 require(hasRole(ROLE_ADMIN, msg.sender), "Sender is not admin");
 _;
}

Fields
MogulNFT has following fields and constants:

● bytes32 public constant ROLE_ADMIN = keccak256("ROLE_ADMIN");

● uint256 nextTokenId = 0;

Functions
MogulNFT has following public and external functions

● constructor
Description
Initializes the contract. Assigns the ROLE_ADMIN role to the provided
_admin address.

Input parameters

○ address _admin
Constraints
None
Events emit
Emits RoleGranted and RoleAdminChanged events.
Output
None

● setUri
Description
Sets a new URI for all token types, by relying on the token type ID
substitution mechanism

Input parameters

○ string memory newUri
Constraints

○ onlyAdmin modifier used
Events emit
None
Output
None

● mintToken
Description
Mint a new ERC1155 Token

Input parameters

○ address recipient,
○ uint256 amount,
○ bytes memory data

Constraints
○ onlyAdmin modifier used

Events emit
None
Output
None

Audit overview

 Critical

No Critical severity issues were found.

 High

1. Vulnerability: Re-entrancy bug
Contracts: MogulMarketplace
Method: buyTokens(uint256, uint256)

State variable updated after calling an external function.

Fixed before second review

 Medium

No Medium severity issues were found.

 Low

1. Vulnerability: Missing zero address validation.
Contract: MogulMarketplace

No checking for zero address for _treasuryWallet in the constructor.
In case of zero address provided there is no ability to change it
later, therefore withdrawETH and withdrawStars functions will fail.

Fixed before second review

2. Vulnerability: Benign reentrancy.
Contract: MogulMarketplace

listTokens and startAuction contain a reentrancy. The reentrancy is
benign because it's exploitation would have the same effect as two
consecutive calls.

Fixed before second review

3. Vulnerability: Events reentrancy.
Contract: MogulMarketplace

buyTokens, endAuction, endAuctionWithoutOracle and listTokens contain
a reentrancy. If such reentrancies happen, the corresponding events
fired by functions will be shown in an incorrect order, which might
lead to issues for third parties.

Fixed before second review

 Lowest / Code style / Best Practice

1. Vulnerability: send / transfer reentrancy.
Contract: MogulMarketplace

send and transfer do not protect from reentrancies in case of gas
price changes

Fixed before second review

2. Vulnerability: Unused state variable
Contract: MogulMarketplace

nextAuctionId is defined but never used in the contract

Fixed before second review

3. Vulnerability: Public function that could be declared external
Contracts: MogulMarketplace, MogulNFT

public functions that are never called by the contract should be
declared external to save gas.

Fixed before second review

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of
functionality was presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 1 high, 3 Low and 3 informational issues during the
first review.

Security engineers found no issues during the second review.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

