

Customer: Bunicorndefi
Date: June 11th, 2021

	

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for

Bunicordefi.
Approved by Andrew Matiukhin | CTO Hacken OU
Type Token, Governance, TimeLock, Defi
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/bunicorndefi/tokenswap_core

https://github.com/bunicorndefi/stablecoin_swap

Timeline 25 MAY 2021 – 05 JUN 2021

Changelog 05 JUN 2021 – INITIAL AUDIT
11 JUN 2021 – SECOND REVIEW

Table of contents

Introduction ... 4	
Scope .. 4	
Executive Summary .. 5	
Severity Definitions ... 7	
AS-IS overview ... 8	
Conclusion .. 22	

	 	

Introduction

Hacken OÜ (Consultant) was contracted by Bunicorndefi (Customer)
to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
May 25th, 2021 – June 05th, 2021. The second code review conducted
on June 11th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repositories:

https://github.com/bunicorndefi/tokenswap_core
https://github.com/bunicorndefi/stablecoin_swap

FILES:
BuniCornPool.sol
BuniCornLibrary.sol
IBuniCornLiquidityRouter.sol
MockBuniCornDao.sol
FeeTo.sol
VolumeTrendRecorder.sol
ExampleFlashSwap.sol
IBuniCornExchangeRouter.sol
ERC20Permit.sol
MockBuniCornPair.sol
IBuniCornRouter02.sol
WBNB9.sol
FeeFomula.sol
IBuniCornDao.sol
DaoRegistry.sol
MathExt.sol
MockVolumeTrendRecorder.sol
MockBuniCornLibrary.sol
IBuniCornPool.sol
IBuniCornFactory.sol
MockFeeOnTransferERC20.sol
MockMathExt.sol
IERC20Permit.sol
MockERC20Permit.sol
TestToken.sol
IBuniCornCallee.sol
IBuniCornRouter01.sol
IERC20Metadata.sol
MockFeeFomula.sol
IWBNB.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item
Code review § Reentrancy

§ Ownership Takeover
§ Timestamp Dependence
§ Gas Limit and Loops
§ DoS with (Unexpected) Throw
§ DoS with Block Gas Limit
§ Transaction-Ordering Dependence
§ Style guide violation
§ Costly Loop
§ ERC20 API violation
§ Unchecked external call
§ Unchecked math
§ Unsafe type inference
§ Implicit visibility level
§ Deployment Consistency
§ Repository Consistency
§ Data Consistency

Functional review § Business Logics Review
§ Functionality Checks
§ Access Control & Authorization
§ Escrow manipulation
§ Token Supply manipulation
§ Assets integrity
§ User Balances manipulation
§ Kill-Switch Mechanism
§ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secured.	

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 8 High, 1 Medium, 2 Low and 4 Info issues
during the audit.

After the second review 4 info vulnerabilities were found.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the first review.

	

low
13%

high
53%

medium
7%

info
27%

low high medium info

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

	

AS-IS overview

BConst.sol

Description

BConst contract with constants.

Imports

BConst has following no imports.

Inheritance

BConst has no inheritance.

Usages

BConst contract has no usages.

Structs

BConst contract has no data structures.

Enums

BConst contract has no enums.

Events

BConst contract has no events.

Modifiers

BConst has no modifiers.

Fields

BuniToken contract has following fields and constants:

• uint public constant BONE = 10**18;

• uint public constant MIN_BOUND_TOKENS = 2;

• uint public constant MAX_BOUND_TOKENS = 8;

• uint public constant MIN_FEE = BONE / 10**6;

• uint public constant MAX_FEE = BONE / 10;

• uint public constant EXIT_FEE = 0;

• uint public constant MIN_WEIGHT = BONE;

• uint public constant MAX_WEIGHT = BONE * 50;

• uint public constant MAX_TOTAL_WEIGHT = BONE * 50;

• uint public constant MIN_BALANCE = BONE / 10**12;

• uint public constant INIT_POOL_SUPPLY = BONE * 100;

• uint public constant MIN_BPOW_BASE = 1 wei;

• uint public constant MAX_BPOW_BASE = (2 * BONE) - 1 wei;

• uint public constant BPOW_PRECISION = BONE / 10**10;

• uint public constant MAX_IN_RATIO = BONE / 2;

• uint public constant MAX_OUT_RATIO = (BONE / 3) + 1 wei;

Functions
BuniToken has no public functions.

BuniConstants.sol

Description

BuniConstants contract with constants.

Imports

BuniConstants has following no imports.

Inheritance

BuniConstants has no inheritance.

Usages

BuniConstants contract has no usages.

Structs

BuniConstants contract has no data structures.

Enums

BuniConstants contract has no enums.

Events

BuniConstants contract has no events.

Modifiers

BuniConstants has no modifiers.

Fields

BuniConstants contract has following fields and constants:

• uint public constant BONE = 10**18;

• uint public constant MIN_WEIGHT = BONE;

• uint public constant MAX_WEIGHT = BONE * 50;

• uint public constant MAX_TOTAL_WEIGHT = BONE * 50;

• uint public constant MIN_BALANCE = BONE / 10**6;

• uint public constant MAX_BALANCE = BONE * 10**12;

• uint public constant MIN_POOL_SUPPLY = BONE * 100;

• uint public constant MAX_POOL_SUPPLY = BONE * 10**9;

• uint public constant MIN_FEE = BONE / 10**6;

• uint public constant MAX_FEE = BONE / 10;

• uint public constant EXIT_FEE = 0;

• uint public constant MAX_IN_RATIO = BONE / 2;

• uint public constant MAX_OUT_RATIO = (BONE / 3) + 1 wei;

• uint public constant MIN_ASSET_LIMIT = 2;

• uint public constant MAX_ASSET_LIMIT = 8;

• uint public constant MAX_UINT = uint(-1);

Functions
BuniConstants has no public functions.

BPool.sol

Description

BPool is a liquidity pool with rewards.

Imports

BPool has following imports:

• BToken.sol;
• BMath.sol;

Inheritance

BPool is BToken and BMath.

Usages

BPool contract has no usages.

Structs

BPool contract has following data structures:

• Record

Enums

BPool contract has no enums.

Events

BPool contract has following events:

• LOG_SWAP

• LOG_JOIN

• LOG_EXIT

• LOG_CALL

Modifiers

BPool has following custom modifiers:

• _logs_

• _lock_

• _viewlock_

Fields

BPool contract has following fields and constants:

• bool private _mutex;

• address private _factory;

• address private _controller;

• bool private _publicSwap;

• uint private _swapFee;

• bool private _finalized;

• address[] private _tokens;

• mapping(address=>Record) private _records;

• uint private _totalWeight;

Functions
BPool has following public functions:

• constructor
• isPublicSwap
• isFinalized
• isBound
• getNumTokens
• getCurrentTokens
• getFinalTokens
• getDenormalizedWeight
• getTotalDenormalizedWeight
• getNormalizedWeight
• getBalance
• getSwapFee
• getController
• setSwapFee
• setController
• setPublicSwap
• finalize
• bind
• rebind
• unbind
• gulp
• getSpotPrice
• getSpotPriceSansFee
• joinPool
• exitPool
• swapExactAmountIn
• swapExactAmountOut
• joinswapExternAmountIn

• joinswapPoolAmountOut
• exitswapPoolAmountIn
• exitswapExternAmountOut

BuniCornPool.sol
Description

BuniCornPool is a liquidity pool with rewards.

Imports
BuniCornPool contract has following imports:

• "@openzeppelin/contracts/math/SafeMath.sol";

• "@openzeppelin/contracts/math/Math.sol";

• "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

• "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

• "./libraries/MathExt.sol";

• "./libraries/FeeFomula.sol";

• "./libraries/ERC20Permit.sol";

• "./interfaces/IBuniCornFactory.sol";

• "./interfaces/IBuniCornCallee.sol";

• "./interfaces/IBuniCornPool.sol";

• "./interfaces/IERC20Metadata.sol";

• "./VolumeTrendRecorder.sol";

Inheritance

BuniCornPool contract is:

• IBuniCornPool,

• ERC20Permit,

• ReentrancyGuard,

• VolumeTrendRecorder,
Usages

BuniCornPool contract has following custom usages:

• using SafeMath for uint256;

• using SafeERC20 for IERC20;
Structs

BuniCornPool contract has following data structures:

• ReserveData.

Enums

BuniCornPool contract has no custom enums.

Events

BuniCornPool contract has following custom evets:

• Mint

• Burn

• Swap

• Sync

Modifiers

BuniCornPool has no custom modifiers.

Fields

BuniCornPool contract has following fields and constants:

• uint256 internal constant MAX_UINT112 = 2**112 - 1;

• uint256 internal constant BPS = 10000;

• uint256 public constant MINIMUM_LIQUIDITY = 10**3;

• IBuniCornFactory public override factory;

• IERC20 public override token0;

• IERC20 public override token1;

• uint112 internal reserve0;

• uint112 internal reserve1;

• uint32 public override ampBps

• uint112 internal vReserve0;

• uint112 internal vReserve1;

• uint256 public override kLast;

Functions

BuniCornPool has following public functions:

• constructor

• initialize

• mint

• burn

• swap

• skim

• sync

• getTradeInfo

• getReserves

• name

• symbol

BFactory.sol

Description

BFactory – pool factory

Imports

BFactory contract has following imports:

• ./BPool.sol;

Inheritance

BFactory contract has no inheritance.

Usages

BFactory contract has no custom usages.

Structs

BFactory contract has no custom data structures.

Enums

BFactory contract has no custom enums.

Events

BFactory contract has following custom evets:

• LOG_NEW_POOL

• LOG_BLABS

Modifiers

BFactory has no custom modifiers.

Fields

BFactory contract has following fields and constants:

• mapping(address=>bool) private _isBPool;

• address private _blabs.

Functions

BFactory has following public functions:

• constructor

• isBPool

• newBPool

• getBLabs

• setBLabs

• collect

BuniCornRouter02.sol
Description

BuniCornRouter02 – funds router

Imports

BuniCornRouter02 contract has following imports:

• @uniswap/lib/contracts/libraries/TransferHelper.sol;

• @openzeppelin/contracts/access/Ownable.sol;

• @openzeppelin/contracts/math/SafeMath.sol;

• @openzeppelin/contracts/token/ERC20/SafeERC20.sol;

• ../interfaces/IBuniCornFactory.sol;

• ../interfaces/IBuniCornRouter02.sol;

• ../interfaces/IERC20Permit.sol;

• ../interfaces/IBuniCornPool.sol;

• ../interfaces/IWETH.sol;

• ../libraries/BuniCornLibrary.sol;

Inheritance

BuniCornRouter02 contract is:

• Ownable

• IBuniCornRouter02,

Usages

BuniCornRouter02 contract has following custom usages:

• using SafeERC20 for IERC20;

• using SafeERC20 for IWETH;

• using SafeMath for uint256;
Structs

BuniCornRouter02 contract has no custom data structures

Enums

BuniCornRouter02 contract has no custom enums.

Events

BuniCornRouter02 contract has no custom evets.

Modifiers

BuniCornRouter02 has following custom modifiers:

• ensure

Fields

BuniCornRouter02 contract has following fields and constants:

• uint256 internal constant BPS = 10000;

• address public immutable override factory;

• IWETH public immutable override weth;

Functions

BuniCornRouter02 has following public functions:

• constructor

• receive

• addLiquidity

• addLiquidityBNB

• addLiquidityNewPool

• addLiquidityNewPoolBNB

• removeLiquidity

• removeLiquidityBNB

• removeLiquidityWithPermit

• removeLiquidityBNBWithPermit

• removeLiquidityBNBSupportingFeeOnTransferTokens

• removeLiquidityBNBWithPermitSupportingFeeOnTransferTokens

• swapExactTokensForTokens

• swapTokensForExactTokens

• swapExactBNBForTokens

• swapTokensForExactBNB

• swapExactTokensForBNB

• swapBNBForExactTokens

• swapExactTokensForTokensSupportingFeeOnTransferTokens

• swapExactBNBForTokensSupportingFeeOnTransferTokens

• swapExactTokensForBNBSupportingFeeOnTransferTokens

• quote

• getAmountsOut

• getAmountsIn

• verifyPoolsPathSwap

	

Audit overview
 Critical

No critical issues were found.

 High

1. BuniCornPool.mint function can be called by anyone, anytime
and execute funds operations. If the attacker catches the
right time, he will be able to mint someone’s coins to address
he wants.

Customer accepts this risk

Customer notice: “We use a modifier called nonReentrant.
nonReentrant is understood as a lock, when an address calls
to the smart contract, the lock will lock it. Thus, no one
can execute any function in the pool while it is locked.”

2. BuniCornPool.burn function can be called by anyone, anytime
and execute funds operations. If the attacker catches the
right time, he will be able to receive someone’s coins to
his address.

Customer accepts this risk

3. BuniCornPool.swap can be called by anyone, anytime and has
no user balance check. Also in this function the line
IBuniCornCallee(to).buniSwapCall(); will be executed only if
calldata > 0 and this is a place where we have any interaction
with a sender.

Customer accepts this risk

4. BuniCornPool.skim: anyone can call and just move funds if
there is any.

Fixed before the second audit

5. BuniCornRouter02.addLiquidityBNB is public but it should be
restricted from the strangers’ calls. Unsafe finance
operations.

Fixed before the second audit

6. BuniCornRouter02.addLiquidity is public but should be
restricted from the strangers’ calls. Unsafe finance
operations.

Fixed before the second audit

7. BuniCornRouter02.removeLiquidityBNBSupportingFeeOnTransferT
oken function sends all of the existed funds to the router’s
address to contract caller.

Fixed before the second audit

8. BuniCornRouter02.removeLiquidity should be private. This is
an internal function, designed to be a part of another
functions. But the issue is that this function does not count
how many liquidities contract receive from a caller. So, if
there is some extra balance on the contract, the exchange
will lose it.

Customer accepts this risk

Customer notice: “In case a liquidity provider approved the
router address to burn their LP token, we use this function
in our interface to remove liquidity from the pool. So, we
think it should be a public function.”

 Medium

BuniCornPool: changes all of the math operations to
SafeMath lib usage.

Fixed before the second audit

 Low

1. Anyone can call the BFactory function newBPool(), create a
new pool and start being the pool owner.

Fixed before the second audit

2. BuniCornPool.swap function and others should be checked for
the 0x0 address.

Fixed before the second audit

 Lowest / Code style / Best Practice

1. There is a duplication of the constant contracts: BConst &
BuniConstants. It is better to unify the constant usages.

2. We strongly recommend using a newer version of the solidity
compiler.

3. Use modifiers to avoid duplicate validations like:

a. msg.sender == _controller and !_finalized,

b. "ERR_IS_FINALIZED"

in BPool contract.

4. BuniCornPool: should move initialize() function code to the
constructor code-block.	

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 8 High, 1 Medium, 2 Low and 4 Info issues
during the audit.

After the second review 4 info vulnerabilities were found.

	

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

