
Customer: WowSwap
Date: June 3rd, 2021

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
WowSwap.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Multiple purposes contracts
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/wowswap-io/protocol/tree/release/audit
Commit 52b3cb8eb21212d9e588df74ed0d962fb8dfaeff
Timeline 17 MAY 2021 – 25 MAY 2021
Changelog 25 MAY 2021 – INITIAL AUDIT

03 JUN - SECOND REVIEW

Table of contents

Introduction 4

Scope 4

Executive Summary 8

Severity Definitions 10

AS-IS overview 11

Audit overview 37

Conclusion 40

Disclaimers 41

Introduction

Hacken OÜ (Consultant) was contracted by WowSwap (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
May 17th, 2021 - May 25th, 2021. The second code review conducted
on June 03rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/wowswap-io/protocol/tree/release/audit
Commit:

52b3cb8eb21212d9e588df74ed0d962fb8dfaeff
Files:

├── dependencies
│ ├── contracts
│ │ ├── Address.sol
│ │ ├── Context.sol
│ │ ├── ERC20.sol
│ │ ├── IERC20.sol
│ │ ├── IERC20Detailed.sol
│ │ ├── Multicall.sol
│ │ ├── Ownable.sol
│ │ ├── SafeERC20.sol
│ │ └── SafeMath.sol
│ ├── pancake
│ │ ├── core
│ │ │ ├── PancakeERC20.sol
│ │ │ ├── PancakeFactory.sol
│ │ │ ├── PancakePair.sol
│ │ │ ├── interfaces
│ │ │ │ ├── IPancakeCallee.sol
│ │ │ │ ├── IPancakeERC20.sol
│ │ │ │ ├── IPancakeFactory.sol
│ │ │ │ └── IPancakePair.sol
│ │ │ └── libraries
│ │ │ ├── Math.sol
│ │ │ ├── SafeMath.sol
│ │ │ └── UQ112x112.sol
│ │ ├── lib

│ │ │ ├── AddressStringUtil.sol
│ │ │ ├── Babylonian.sol
│ │ │ ├── BitMath.sol
│ │ │ ├── FixedPoint.sol
│ │ │ ├── FullMath.sol
│ │ │ ├── SafeERC20Namer.sol
│ │ │ └── TransferHelper.sol
│ │ └── periphery
│ │ ├── PancakeRouter.sol
│ │ ├── PancakeRouter01.sol
│ │ ├── interfaces
│ │ │ ├── IPancakeMigrator.sol
│ │ │ ├── IPancakeRouter01.sol
│ │ │ ├── IPancakeRouter02.sol
│ │ │ ├── IWETH.sol
│ │ │ └── V1
│ │ │ ├── IUniswapV1Exchange.sol
│ │ │ └── IUniswapV1Factory.sol
│ │ └── libraries
│ │ ├── PancakeLibrary.sol
│ │ └── SafeMath.sol
│ └── upgradeability
│ ├── AdminUpgradeabilityProxy.sol
│ ├── BaseAdminUpgradeabilityProxy.sol
│ ├── BaseUpgradeabilityProxy.sol
│ ├── Initializable.sol
│ ├── InitializableAdminUpgradeabilityProxy.sol
│ ├── InitializableUpgradeabilityProxy.sol
│ ├── Proxy.sol
│ └── UpgradeabilityProxy.sol
├── interfaces
│ ├── IPair.sol
│ ├── IPairExplorer.sol
│ ├── IPairFactory.sol
│ ├── IParamProvider.sol
│ ├── IParamProviderFactory.sol
│ ├── IPriceGuard.sol
│ ├── IReserve.sol
│ ├── IReserveFactory.sol
│ ├── IRouter.sol
│ └── uniswap
│ └── IUniswapRouter.sol

├── mocks
│ ├── MockInterestStrategy.sol
│ ├── MockPancackeRouter.sol
│ ├── MockPriceGuard.sol
│ ├── MockPricedPancakeRouter.sol
│ ├── MockReserveLogic.sol
│ ├── MockToken.sol
│ ├── MockTokenWithFeeOnTransfer.sol
│ ├── guards
│ │ └── MockChainlinkPriceGuard.sol
│ └── v1
│ ├── PairFactoryV1.sol
│ ├── PairV1.sol
│ ├── ParamProviderFactoryV1.sol
│ ├── ParamProviderV1.sol
│ ├── ReserveFactoryV1.sol
│ ├── ReserveV1.sol
│ └── interfaces
│ ├── IPairFactoryV1.sol
│ ├── IPairV1.sol
│ ├── IParamProviderFactoryV1.sol
│ ├── IParamProviderV1.sol
│ ├── IReserveFactoryV1.sol
│ ├── IReserveV1.sol
│ └── IRouterV1.sol
└── protocol

├── Pair.sol
├── PairExplorer.sol
├── PairFactory.sol
├── ParamProvider.sol
├── ParamProviderFactory.sol
├── Reserve.sol
├── ReserveFactory.sol
├── Router.sol
├── guards
│ ├── AllowAnyPriceGuard.sol
│ ├── ChainlinkPriceFactory.sol
│ ├── ChainlinkPriceGuard.sol
│ └── MultiChainlinkPriceGuard.sol
└── libraries
├── CoreLibrary.sol
├── DataTypes.sol

├── EnumerableSet.sol
├── FactoryLibrary.sol
├── helpers
│ ├── Errors.sol
│ └── TransferHelper.sol
├── logic
│ ├── DebtLibrary.sol
│ ├── InterestStrategy.sol
│ └── LiquidityMath.sol
├── math
│ ├── MathUtils.sol
│ ├── PercentageMath.sol
│ └── WadRayMath.sol
└── upgradeability

└── Versioned.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secured.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. All found issues can be found in the Audit overview
section.

Security engineers found 2 critical, 4 high, 7 medium, 2 low,
and 2 informational issues during the audit.

After the second review no vulnerabilities were found.

Graph 1. The distribution of vulnerabilities after the audit.

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

AS-IS overview

Contracts within Dependencies

Description

Numerous contracts exist within the dependencies directory,
primarily focused on three primary elements: core functionality
contracts (which should be transferred to their OpenZeppelin
equivalents), PancakeSwap contracts (which is a known vulnerable
codebase that has had broader security issues in the past), and
upgradability (which again should be transferred to their
OpenZeppelin equivalents). It is unclear why certain elements of
the Pancake library are present, namely the ERC20 deployment
(rather than referencing an existing deployment). In particular,
the inclusion of PancakeRouter01 brings much concern, as this
router had to be removed by the pancake team due to existing
security issues within the contract.

Contracts within Interfaces

Description

Numerous contracts exist within the Interfaces directory. These
compose the function structure of the contracts, as interfaces
do not have any definition or any state variables, constructors,
or any function with implementation. Interfaces only contain
function declarations.

Contracts within Mocks

Description

Mock contracts are non-deployed contracts focused upon
functional unit testing of various functionality. Mock contracts
are easily controlled by the developer, allowing rapid iteration
and development.

https://voting.pancakeswap.finance/?_gl=1*19hc0k3*_ga*MTU4OTcxMjg3OS4xNjA0NDMwMzIx*_ga_334KNG3DMQ*MTYwNDUwMzE4MC4xMC4xLjE2MDQ1MDMzMTIuMA..#/pancake/proposal/QmSTNW761Jn7mzpLZZ9qBKUaLjk2QbHAxJaBR85qw7rKeY
https://voting.pancakeswap.finance/?_gl=1*19hc0k3*_ga*MTU4OTcxMjg3OS4xNjA0NDMwMzIx*_ga_334KNG3DMQ*MTYwNDUwMzE4MC4xMC4xLjE2MDQ1MDMzMTIuMA..#/pancake/proposal/QmSTNW761Jn7mzpLZZ9qBKUaLjk2QbHAxJaBR85qw7rKeY

Contracts within Protocol/guards

Description

Numerous contracts

Contracts within Protocol/guards

Description

A number of singular function contracts exist within the
protocol/guards directory: AllowAnyPriceGuard,
ChainlinkPriceFactory, ChainlinkPriceGuard, and
MultiChainlinkPriceGuard.

These functions (and the contracts which contain them) aim to
prevent execution over a certain threshold.

Contracts within Protocol/libraries

Description

Multiple singular function contracts exist within
protocol/libraries (as structured below).

Per the code, these libraries provide methods to calculate math,
find addresses and so on. Importantly, the contract Errors.sol
also defines the key for error messages in the WOWswap protocol:

VL = ValidationLogic

MATH = Math libraries

CT = Common errors between tokens

LP = LiquidityProvider token (pair tokens)

DT = DebtToken

P = Pair

RL = ReserveLogic

F = Factory

R = Reserve

RT = Router

CoreLibrary.sol -- Empty library definition

DataTypes.sol -- Defines a number of structs: Debt, ReserveDebt,
ReserveConfig, ReserveState (which contains a TODO item),
ReserveData, Position, ProtocolParameters, TokenParameters and
MinWOWBalanceParameters.

EnumerableSet.sol -- Contains logic for set manipulation and
creation.

FactoryLibrary.sol -- Creates an implementation of provided
bytecode through getOrCreateImplementation.

├── helpers

│ ├── Errors.sol -- Defines error structure

│ └── TransferHelper.sol -- Helper methods for
interacting

with ERC20 tokens and sending ETH that do not consistently
return true/false

├── logic

│ ├── DebtLibrary.sol -- Calculation methods for
user debt and

accumulated interest from ReserveDebt storage data.

│ ├── InterestStrategy.sol -- Calculates
utilization,

interest, and borrow rates based on current debt and available
liquidity.

│ └── LiquidityMath.sol -- Calculation of share and
debt

interests

├── math

│ ├── MathUtils.sol -- Contains a function to
calculate the

interest using a compounded interest rate formula. This
calculation has multiple issues as denoted within the audit
findings.

│ ├── PercentageMath.sol -- Provides functions to
perform

percentage calculations

│ └── WadRayMath.sol -- Provides mul and div
function for wads

(decimal numbers with 18 digits precision) and rays (decimals
with 27 digits)

└── upgradeability

└── Versioned.sol -- Helper contract to implement

initializer functions.

Pair.sol

Description

Entry point to create trading position with leverage

Users can:

- Deposit liquidity
- Withdraw liquidity
- Open position
- Close position
- Liquidate unhealthy positions

Imports

Pair imports the following contracts:

● import
"@openzeppelin/contracts-upgradeable/utils/ContextUpgrad
eable.sol";

● import
"@openzeppelin/contracts-upgradeable/proxy/Initializable
.sol";

● import
"@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Up
gradeable.sol";

● import
"./../dependencies/pancake/core/interfaces/IPancakePair.
sol";

● import "./../dependencies/contracts/SafeMath.sol";
● import "./../dependencies/contracts/IERC20.sol";
● import "./../interfaces/IPair.sol";
● import "./../interfaces/IRouter.sol";
● import "./../interfaces/IReserve.sol";
● import "./../interfaces/IPriceGuard.sol";
● import "../interfaces/IReserveFactory.sol";
● import "./libraries/upgradeability/Versioned.sol";
● import "./libraries/helpers/TransferHelper.sol";
● import

"../dependencies/pancake/periphery/interfaces/IPancakeRo
uter02.sol";

● import "./libraries/math/PercentageMath.sol";
● import "../interfaces/IParamProvider.sol";

Inheritance

Pair inherits PairStorage and IPair.

Usages

Pair contract uses the following:

● using SafeMath for uint256

● using PercentageMath for uint256;

Structs

Pair contract has no structs (instead mainly inheriting data
structure from PairStorage)

Enums

Pair contract has no custom enums.

Events

Pair contract emits no custom events.

Modifiers

Pair has no modifiers.

Fields

Pair has multiple fields:

● uint256 constant ONE = 10000 -- A constant, value of one
● uint256 public constant REVISION = 0x4 -- The present

revision number

Functions

Pair has a number of public functions:

● initialize
Description
Initializes a pool instance
Visibility
external
Modifiers
The initializer modifier is required.
Input parameters

● address reserve
● address paramProvider
● address treasurer
● address wow

● address[] calldata path
● string calldata name
● string calldata symbol

Constraints
No constraints exist.
Events emit
No event is emit.
Output
Nothing is returned.
● openPosition
Description
Opens a position for trading
Visibility
external
Modifiers
None.
Input parameters

● address trader,
● uint256 leverageFactor
● uint256 amountOutMin

Constraints
Requires leverage to be greater than or equal to one, but
less than the maximum amount of leverage.
Requires traders balance to meet minimum threshold for
trading.
Events emit
No event is emit.
Output
Returns uint256 amountOut
● closePosition
Description
Closes a position taken by a trader
Visibility
external
Modifiers
None
Input parameters

● address trader

● uint256 amountOutMin
Constraints
Amount out must be at least the minimum amount out
Events emit
No event is emit.
Output
Returns uint256 amountOut

● liquidatePosition
Description
Allows a position to be liquidated
Visibility
external
Modifiers
None.
Input parameters

● address trader
● address liquidator

Constraints
No constraints exist.
Events emit
No event is emit.
Output
Boolean (returns true by default)
● positionCosts
Description
Calculate costs associated with a position
Visibility
external
Modifiers
None
Input parameters

● address trader
Constraints
No constraints exist.
Events emit
No event is emit
Output

Returns the balance and debt of the trader

● getRateMultiplier, getBorrowLimit, getLiquidationCost,
calcProfitFee, getAmountOut, getDeposit,
getTotalDeposit, getLoan, getTotalLoan

Single use getter and view functions with minimal
calculations associated.

PairExplorer.sol

Description

PairExplorer contract manages data of the pair

Imports

PairExplorer has the following imports:

1.import "./../dependencies/contracts/IERC20.sol";
2.import "../interfaces/IPair.sol";
3.import {Position} from "./libraries/DataTypes.sol";
4.import "../interfaces/IPairExplorer.sol";
5.import "../interfaces/IReserve.sol";
6.import "./../dependencies/contracts/SafeMath.sol";
7.import "./libraries/math/PercentageMath.sol";

Inheritance

PairExplorer contract inherits IPairExplorer.

Usages

PairExplorer contract has two usages, using SafeMath for uint256
and using PercentageMath for uint256;

Structs

PairExplorer contract has no structs.

Enums

PairExplorer contract has no custom enums.

Events

PairExplorer contract has no events.

Modifiers

PairExplorer has no modifiers.

Fields

PairExplorer has no fields.

Functions

PairExplorer has the following public functions:

getPair, getRoutablePair, getReserve, getPosition,
getProxyPosition, calculateBalance, calculateProxyBalance,
calculateOpenPosition, calculateOpenProxyPosition

Description
Getter functions with minimal computation.

PairFactory.sol

Description

PairFactory is responsible for Pair creation

Imports

PairFactory contract has multiple inputs:

● import
"@openzeppelin/contracts-upgradeable/utils/ContextUpgrad
eable.sol";

● import
"@openzeppelin/contracts-upgradeable/proxy/Initializable
.sol";

● import
"@openzeppelin/contracts-upgradeable/access/OwnableUpgra
deable.sol";

● import
"../dependencies/upgradeability/InitializableAdminUpgrad
eabilityProxy.sol";

● import "./libraries/helpers/Errors.sol";
● import "./libraries/EnumerableSet.sol";
● import "./libraries/upgradeability/Versioned.sol";
● import "./Pair.sol";
● import "../dependencies/contracts/IERC20Detailed.sol";
● import

"../dependencies/pancake/core/interfaces/IPancakeFactory
.sol";

● import "../interfaces/IReserveFactory.sol";
● import "../interfaces/IPairFactory.sol";
● import "../interfaces/IParamProviderFactory.sol";
● import "./libraries/FactoryLibrary.sol";

Inheritance

PairFactory contract inherits PairFactoryStorage and
IPairFactory.

Usages

PairFactory contract has one usage, using EnumerableSet for
EnumerableSet.AddressSet.

Structs

PairFactory contract has no structs.

Enums

PairFactory contract has no enums

Events

PairFactory emits no events.

Modifiers

PairFactory has two modifiers:

● isTradable
● isProxyLendable

Fields

PairFactory has one custom field:

● uint256 public constant REVISION = 0x4;

Functions

registerTradable, registerTradables, registerProxyLendable,
registerProxyLendables, upgrade,

Owner gated or single use functions with minimal
computation. Primarily used for maintenance and setup

getPair, getOrCreatePair, getRoutablePair,
getOrCreateRoutablePair, getAllTradeables, getAllProxyLendables
Description

Getter functions with minimal computation.

ParamProvider.sol

Description

ParamProvider defines contract storage to reuse in future
implementations without copy and paste.

Imports

ParamProvider contract has multiple imports:

● import
"@openzeppelin/contracts-upgradeable/access/OwnableUpgra
deable.sol";

● import "./libraries/upgradeability/Versioned.sol";
● import "../interfaces/IParamProvider.sol";
● import {ProtocolParameters, TokenParameters} from

"./libraries/DataTypes.sol";

Inheritance

ParamProvider contract inherits OwnableUpgradeable and
Versioned.

Usages

ParamProvider contract has no usages.

Structs
ParamProvider contract has no structs.

Enums

ParamProvider contract has no enums.

Events

ParamProvider has no event emittance.

Modifiers

ParamProvider has no custom modifiers.

Fields

ParamProvider has one custom fields

● uint256 public constant REVISION = 0x4;

Functions

● initialize
Description

Initialize pool instance

Visibility

external

Input parameters

Multiple input parameters exist:
● address owner -- The owner’s wallet address
● address swapRouter -- The SwapRouter address
● ProtocolParameters calldata defaultParameters --

Configuration parameters for the protocol
● TokenParameters calldata defaultTokenParameters --

Configuration parameters for the token
● MinWOWBalanceParameters[] calldata minWOWBalances --

Minimum balance required for a position
Constraints

No constraints exist.
Events emit

No event is emit.

Output

Nothing is returned.

The remaining functions of ParamProvider are gated controls
limited to onlyOwner.

ParamProviderFactory.sol

Description

ParamProviderFactory defines methods for ParamProvider creation.
Beyond the initialize function, which validates that the proper
creation of the ParamProvider is within set bounds (as
determined by the defaultParameters)

Reserve.sol

Description

Holds investors funds to provide loans for trading positions

Usages

Reserve contract has multiple usages:
● using SafeERC20 for IERC20;
● using SafeMath for uint256;
● using WadRayMath for uint256;
● using PercentageMath for uint256;
● using LiquidityMath for ReserveData;
● using DebtLibrary for ReserveDebt;
● using InterestStrategy for ReserveConfig;

Structs

Reserve contract has no structs.

Enums

Reserve contract has no enums

Events

Reserve emits no events.

Modifiers

Reserve has one modifiers:

● onlyPair -- Only pair may call a function with this
modifier

Fields

Reserve has one custom field:

● uint256 public constant REVISION = 0x4;

Functions

Reserve has the following public functions:

● initialize
Description

Initialize reserve instance

Visibility

external

Input parameters

Multiple input parameters exist:

● address pairFactory_ -- Address of the associated
pair factory

● address param_provider -- Address of the
ParamProvider

● string calldata name_ -- Name associated with the
reserve

● string calldata symbol_ -- Symbol associated with
the reserve

● address liquidityToken_ -- Liquidity token address
associated with the reserve.

Constraints

No constraints exist.
Events emit

No event is emit.

Output

Nothing is returned.

● fill
Description

Fills the reserve

Visibility

external

Input parameters

No input parameters exist.
Constraints

No constraints exist.
Events emit

The Fill event is emit.

Output

Nothing is returned.

● deposit
Description

Deposits into a reserve instance

Visibility

external

Input parameters

One input parameter exists:

● address investor -- Address of the investor
Constraints

No constraints exist.
Events emit

The Deposit event is emitted.

Output

Nothing is returned.

● withdraw
Description

Withdraws from the reserve instance, and sets the interest

rate to 0.

Visibility

external

Input parameters

Multiple input parameters exist:

● address from, address to -- Self explanatory
Constraints

Available balance must be greater than zero.
Events emit

No event is emitted.

Output

Nothing is returned.

● repay
Description

Repay a borrow

Visibility

external

Input parameters

Multiple input parameters exist:

● address pair, address trader -- Self explanatory
Constraints

No constraints exist.
Events emit

The Repay event is emit.

Output

debtLeft is returned.

getState, getConfig, getReserveDebt, getDebtState, getDebt,
getLiquidity, getLiquidityIncrease, getHolder,
getLiquidityFeeAccrued, shareOf, liquidityOf, getTotalLiquidity,
getBorrowRate, getLiquidityRate, getAvailableLiquidity,
getTotalDebt, getUtilizationRate, transferDebt,
calculateDeposit, calculateWithdraw, calculateBorrow

Description
Getter functions with minimal computation.

ReserveFactory.sol

Description

ReserveFactory defines methods for methods for Reserve creation.
Beyond the initialize function, which validates that the proper
creation of the Reserve is within set bounds (as determined by
the defaultParameters of the ParamProvider)

Router.sol

Description

Router defines methods for overall position creation and
routing.

Inheritance

Router inherits RouterStorage, IRouter, and PairExplorer.

Usages

Router contract has multiple usages:
● using SafeERC20 for IERC20;
● using SafeMath for uint256;

Structs

Router contract has no structs.

Enums

Router contract has no enums

Events

Router emits no events.

Modifiers

Router has one modifiers:

● ensure -- Ensure the block timestamp based deadline has
not passed

Fields

Reserve has one custom field:

● uint256 public constant REVISION = 0x4;

Functions

Router has the following public functions:

● openPosition, openProxyPosition
Description

Opens a position

Visibility

external

Input parameters

Multiple input parameters exist:

● uint256 amountIn -- Amount inbound
● uint256 leverageFactor -- Amount of leverage used
● uint256 amountOutMin -- Minimum amount out
● address lendable -- The lendable address
● (only on openProxyPosition) address proxyLendable --

The lendable proxy address
● address tradable -- The tradeable address
● address trader -- The trader address
● uint256 deadline - The deadline (in epoch seconds)

Constraints

No constraints exist.
Events emit

No event is emit.

Output

Return IPair(pair)

● openPositionETH
Description

Opens a position

Visibility

external

Input parameters

Multiple input parameters exist:

● uint256 leverageFactor -- Amount of leverage used
● uint256 amountOutMin -- Minimum amount out
● address tradable -- The tradeable address
● address trader -- The trader address
● uint256 deadline - The deadline (in epoch seconds)

Constraints

No constraints exist.
Events emit

No event is emit.

Output

Return IPair(pair)

● closePosition, closeProxyPosition, closePositionETH
Description

Closes a position

Visibility

external

Input parameters

Multiple input parameters exist:

● uint256 amountIn -- Amount inbound
● uint256 amountOutMin -- Minimum amount out
● (only on closePosition and closeProxyPosition)

address lendable -- The lendable address
● (only on closeProxyPosition) address proxyLendable

-- The lendable proxy address
● address tradable -- The tradeable address
● address trader -- The trader address
● uint256 deadline - The deadline (in epoch seconds)

Constraints

No constraints exist.
Events emit

No event is emit.

Output

Return IPair(pair), or nothing, in the case of

closePositionEth.

● liquidatePosition, liquidateProxyPosition
Description

Liquidates a position

Visibility

external

Input parameters

Multiple input parameters exist:

● address lendable -- Lendable address
● address proxyLendable (only with

liquidateProxyPosition) -- Proxy address
● address tradable -- Tradable address
● address trader -- Trader address

Constraints

The pair must not be address 0.
Events emit

No event is emit.

Output

Nothing is returned.

● deposit, depositETH
Description

Deposit into the reserve

Visibility

external

Input parameters

Multiple input parameters exist:

● address lendable -- Lendable address
● uint256 amount -- Amount
● address to -- To address

Constraints

The pair must not be address 0.

Events emit

No event is emitted.

Output

Nothing is returned.

● withdraw, withdrawETH
Description

Withdraw from the reserve

Visibility

external

Input parameters

Multiple input parameters exist:

● address lendable -- Lendable address, not present
on withdrawEth

● uint256 amount -- Amount withdrawn
● address to -- Address received

Constraints

Reserve for withdrawal must exist
Events emit

No event is emitted.

Output

Nothing is returned.

WETH, swapFactory, swapRouter, reserveFactory, pairFactory

Description

Getter functions with minimal computation.

sweepFee, getReserve

Description

Proxy functions with minimal computation.

Audit overview

Critical

1. Described functionality not present in CoreLibrary despite
code comments suggesting functionality should exist. If the
constructor should be empty, a comment should be placed
alluding to such.

Fixed before the second audit

2. High interest rates and long compounding times can lead to
high inaccuracies as a result of choices made by the team to
save gas. The error of this approximation can become quite
substantial, especially for per-second compounding. For
example, a 25 % APR could have an error of as much as 5 %
using the three-term Taylor series rather than a more
complete approximation. Be cautioned that most standards
calculators may also hide this error since they typically
use approximations of their own, albeit more robust ones.

Partially fixed before the second audit and it's an acceptable
risk by the customer

High

1. Contract code size of multiple contracts exceeds 24576 bytes
(a limit introduced in Spurious Dragon). This contract may
not be deployable on mainnet. Consider enabling the
optimizer (with a low "runs" value!), turning off revert
strings, or using libraries. protocol/PairFactory.sol,
protocol/ParamProviderFactory.sol, protocol/Reserve.sol,
protocol/ReserveFactory.sol

Fixed before the second audit

2. Numerous reentrant functions throughout the protocol could
benefit from the usage of ReentrancyGuard. While the bulk of
contracts that do possess reentrant behaviors are trusted (e.g.

native to the protocol), there are a number of those which are
not.

Fixed before the second audit

3. Throughout the protocol, numerous functions aim to save gas
at the cost of a loss of precision for end-users (such as
within Babylonian.sol, MathUtils.sol, and many others).
These optimizations should be made apparent to end-users.

Customer accepts this risk

4. FIXME item remains in code (Pair.sol, PairExplorer.sol)

Fixed before the second audit

Medium

1. Unused local variable located at protocol/Reserve.sol:204
(uint256 fee).

Fixed before the second audit

2. Unused function parameter (amount). Remove or comment out the
variable name to silence this warning
(protocol/Reserve.sol:448) function calculateDeposit(uint256
amount, address investor)

Fixed before the second audit

3. Loss of precision in ParamProvider.minWOWBalance(uint256)
(protocol/ParamProvider.sol#160-169) as it performs a
multiplication on the result of a division:
leverageFactorRoundedUp = (leverageFactor / 10000) * 10000

Omitted as intentional behaviour

4. Legacy (read: non-utilized) code remains within PairStorage
and PairFactoryStorage. These elements should be removed if
no longer in use.

Customer accepts this risk

5. Burn within PancakePair.sol should have safety checks native
to the function (as it is externally facing) rather than
rely upon the external contract (as individuals are not
restricted from interfacing with it).

Customer accepts this risk

6. TODO item remains in code (within DataTypes.sol)

Fixed before the second audit

7. registerLendables within ReserveFactory.sol can result in
resource exhaustion when too many lendables are registered
at one time.

Customer accepts this risk

Low

1. No zero / null checks exist on setters (seen most
prominently within ParamProvider.sol).

Omitted as intentional behaviour

2. Error message in PancakePair could be more verbose
require(balance0Adjusted.mul(balance1Adjusted) >=
uint(_reserve0).mul(_reserve1).mul(1000**2), 'Pancake: K');

Customer accepts this risk

Lowest / Code style / Best Practice

1. Solidity style guide is not followed for variable or function
naming.

Customer accepts this risk

2. Extensive typographical errors throughout the contract,
primarily within code comments.

Fixed before the second audit

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools.

Audit report contains all found security vulnerabilities and
other issues in the reviewed code.

Security engineers found 2 critical, 4 high, 7 medium, 2 low,
and 2 informational issues during the audit.

After the second review no vulnerabilities were found.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the
intended functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our
best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only —
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain
platform. The platform, its programming language, and other
software related to the smart contract can have its
vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

