

Customer: PeakDeFi

Date: March 3rd, 2021

SMART CONTRACT
CODE REVIEW AND
SECURITY ANALYSIS
REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a
decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for PeakDeFi.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Staking

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/PeakDeFi/liquidy_mining

Commit

Deployed
contract

Timeline 01 MAR 2021 – 03 MAR 2021

Changelog 03 MAR 2021 – INITIAL AUDIT

Table of contents

Introduction ... 4

Scope .. 4

Executive Summary .. 5

Severity Definitions .. 7

AS-IS overview.. 8

Conclusion .. 13

Disclaimers ... 14

Introduction

Hacken OÜ (Consultant) was contracted by PeakDeFi (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code
review conducted between March 01st, 2021 – March 3rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
File:

PeakStakingRewards.sol
SafeERC20.sol
RewardsDistributionRecipient.sol
ReentrancyGuard.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secure.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Notice:

1. The code is not tested. Existing tests does not validate any conditions.

2. The audit scope includes only contracts from the Scope section of this
report and its security rating may not be extrapolated to another
contracts of the PeakDeFi project.

Security engineers found 2 medium issues during the audit.

Insecure Poor secured Secured Well-secured

You are

here

Graph 1. The distribution of vulnerabilities after the first review.

Medium
100% Medium

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

PeakStakingRewards.sol

Description

PeakStakingRewards is a staking contract.

Imports

PeakStakingRewards has following imports:

• @openzeppelin/contracts/math/Math.sol

• ./interfaces/IStakingRewards.sol"

• ./interfaces/IUniswapV2ERC20.so

• ./libraries/ReentrancyGuard.sol

• ./libraries/SafeERC20.sol

• ./libraries/RewardsDistributionRecipient.sol

Inheritance

PeakStakingRewards is IStakingRewards, RewardsDistributionRecipient,
ReentrancyGuard.

Usages

PeakStakingRewards contract has following usages:

• SafeMath for uint256

• SafeERC20 for IERC20

Structs

PeakStakingRewards contract has no data structures.

Enums

PeakStakingRewards contract has no enums.

Events

PeakStakingRewards contract has following events:

• event RewardAdded(uint256 reward)

• event Staked(address indexed user, uint256 amount)

• event Withdrawn(address indexed user, uint256 amount)

• event RewardPaid(address indexed user, uint256 reward)

Modifiers
PeakStakingRewards has following modifiers:

• updateReward – updates global and users reward params.

Fields

PeakStakingRewards contract has following fields and constants:

• IERC20 public rewardsToken

• IERC20 public stakingToken

• uint256 public periodFinish = 0

• uint256 public rewardRate = 0

• uint256 public rewardsDuration =30 days

• uint256 public lastUpdateTime

• uint256 public rewardPerTokenStored

• mapping(address => uint256) public userRewardPerTokenPaid

• mapping(address => uint256) public rewards

• uint256 private _totalSupply

• mapping(address => uint256) private _balances

Functions
PeakStakingRewards has following public functions:

• constructor
Description
Inits the contract and sets default parameters.
Visibility
public
Input parameters

o address _rewardsDistribution
o address _rewardsToken
o address _stakingToken

Constraints
None
Events emit
None
Output

 None

• totalSupply, balanceOf, lastTimeRewardApplicable, rewardPerToken,
earned, getRewardForDuration
Description
View functions that calculates corresponding values.

• stakeWithPermit
Description
Stakes an amount of tokens. Requires permit.
Visibility
external
Input parameters

o uint256 amount
o uint deadline
o uint8 v
o bytes32 r
o bytes32 s

Constraints
o amount should be greater than 0.

Events emit
Emits Staked event.
Output

 None

• stake
Description
Stakes an amount of tokens.
Visibility
external
Input parameters

o uint256 amount
Constraints

o amount should be greater than 0.
Events emit
Emits Staked event.
Output

 None

• withdraw
Description
Withdraws an amount of tokens.
Visibility
public
Input parameters

o uint256 amount
Constraints

o amount should be greater than 0.
Events emit
Emits Withdrawn event.
Output

 None

• getReward
Description
Withdraws all rewards received by a user.
Visibility
public
Input parameters
None
Constraints
None
Events emit
Emits RewardPaid event.
Output

 None

• exit
Description
Withdraws all tokens and rewards.
Visibility
public
Input parameters
external
Constraints
None
Events emit
Emits Withdrawn and RewardPaid events.
Output

 None

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Rewards calculations relies on 18 decimals. Tokens with another number

of decimals may not be used.

We recommend fetching token decimals from the token itself in the

constructor and using this value afterwards.

2. safeApprove, safeIncreaseAllowance and safeDecreaseAllowance of the

SafeERC20 contract is never used.

We recommend removing unused functions.

 Low

No low severity issues were found.

 Informational / Code style / Best Practice

No informational issues were found.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Notice:

1. The code is not tested. Existing tests does not validate any conditions.

2. The audit scope includes only contracts from the Scope section of this
report and its security rating may not be extrapolated to another
contracts of the PeakDeFi project.

Security engineers found 2 medium issues during the audit.

Violations in the following categories were found and addressed to Customer:

Category Check Item Comments

Code review ▪ Repository consistency ▪ The code is not covered with
unit tests.

 ▪ Unused code ▪ Unused code were found.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

