

Customer: Nimbus
Date: July 16th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Nimbus.

Approved by Andrew Matiukhin | CTO Hacken OU

Type dApps

Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/nimbusplatformorg/nim-

smartcontract/tree/7bda71190cca5d139e15b46a33ca041eb060f38d
(INITIAL AUDIT)
https://github.com/nimbusplatformorg/nim-
smartcontract/commit/12a41a194f39670637d79ef2c5bcc6a70d617781
(SECOND REVIEW)

Deployed
contract

Changelog 24 MAY 2021 – INITIAL AUDIT
16 JULY 2021 – SECOND REVIEW

https://github.com/nimbusplatformorg/nim-smartcontract/tree/7bda71190cca5d139e15b46a33ca041eb060f38d
https://github.com/nimbusplatformorg/nim-smartcontract/tree/7bda71190cca5d139e15b46a33ca041eb060f38d
https://github.com/nimbusplatformorg/nim-smartcontract/commit/12a41a194f39670637d79ef2c5bcc6a70d617781
https://github.com/nimbusplatformorg/nim-smartcontract/commit/12a41a194f39670637d79ef2c5bcc6a70d617781

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 7

Audit overview.. 8

Conclusion... 10

Disclaimers.. 11

Introduction

Hacken OÜ (Consultant) was contracted by Nimbus (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted on May
24th, 2021.

Second review conducted on July 16th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/nimbusplatformorg/nim-smartcontract/commit/
Commit: 12a41a194f39670637d79ef2c5bcc6a70d617781

Files:
 dApps/P2P/NimbusP2PERC20.sol
 dApps/RevenueChannels/*

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

https://github.com/nimbusplatformorg/nim-smartcontract/commit/12a41a194f39670637d79ef2c5bcc6a70d617781

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secure.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. All found issues can be found in the Audit overview
section.

As a result of the audit, security engineers found 1 high, 2
medium and 6 low severity issues.

After the second review the code contains 2 medium and 6 low
severity issues.

Notices:

1. Description of contracts logic is not provided by the
Customer and we may not prove correctness of some
calculation.

2. The code is not covered with unit tests. We strongly
recommend covering as much code as possible.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the audit.

Graph 2. The distribution of vulnerabilities after the second review.

High
10%

Medium
30%

Low
60%

High Medium Low

Medium
33%Low

67%

Medium Low

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Audit overview

 Critical

No critical issues were found.

 High

1. swapsImpl contract is not in the audit scope. Results of the
dexSwap function call is used in unsafe math operations in
the _swapsCall function. Uint256 overflow can happen.

Contracts: SwapsUsers.sol

Function: _swapsCall_internal

Recommendation: Provide the SwapsImpl contract code or use
safe math operations.

Status: Addressed in
12A41A194F39670637D79EF2C5BCC6A70D617781 commit.

 Medium

1. Hardcoded addresses are used.

Contracts: LoanTokenLogicStandard.sol,
LoanTokenSettingsLowerAdmin.sol

Recommendation: Init values in constructor or in a separate
init function.

2. incentivePercent value is not validated for 0. As soon as
its value in the liquidationIncentivePercent is set by owners
manually, there’s no guarantee that a value exists when the
function is called.

Contracts: LiquidationHelper.sol

Function: _getLiquidationAmounts

Recommendation: add non-zero validation

 Low

1. Contracts uses old compiler version.

Contracts: all

Recommendation: update to the latest stable compiler version.

2. The contract contains no public or external functions.

Contracts: SwapsUser, VaultController, LiquidationHelper,
InterestUser, FeesHelper, EnumerableBytes32Set

Recommendation: mark contracts as abstract.

3. Copies of the OpenZeppelin contracts are stored.

Recommendation: import all libraries directly from the
OpenZeppelin. Get rid of local copies.

4. Contracts are unused.

Contracts: IChai.sol

Recommendation: remove unused contracts.

5. Errors with number like “15” and “16” are not descriptive.

Contracts: all

Recommendation: throw descriptive error messages.

6. The contract should be an interface. The LoanMaintenance
should implement this interface.

Contracts: ProtocolLike.sol

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 high, 2
medium and 6 low severity issues.

After the second review the code contains 2 medium and 6 low
severity issues.

Notices:

1. Description of contracts logic is not provided by the
Customer and we may not prove correctness of some
calculation.

2. The code is not covered with unit tests. We strongly
recommend covering as much code as possible.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only —
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

