

Customer: JulSwap
Date: February 25th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for JulSwap.
Approved by Andrew Matiukhin | CTO Hacken OU

Type Token Swap
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository
Commit
Deployed
contract

Timeline 22 FEB 2021 – 25 FEB 2021
Changelog 25 FEB 2021 – INITIAL AUDIT

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 6

AS-IS overview.. 7

Conclusion... 37

Disclaimers.. 38

Introduction

Hacken OÜ (Consultant) was contracted by JulSwap (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
February 22nd, 2021 – February 25th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
File:

BSCswapBEP20.sol
BSCswapFactory.sol
BSCswapPair.sol
BSCswapRouter.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 informational issue during the audit.

Graph 1. The distribution of vulnerabilities after the first review.

Informational
100% Informational

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

BSCswapFactory.sol

Description

BSCswapFactory is a contract for creating liquidity pairs.

Imports

BSCswapFactory contract has following imports:

• IBSCswapFactory.sol – an interface from the project files.
• BSCswapPair.sol – a contract from the project files.

Inheritance

BSCswapFactory is IBSCswapFactory.

Usages

BSCswapFactory contract has no custom usages.

Structs

BSCswapFactory contract has no data structures.

Enums

BSCswapFactory contract has no enums.

Events

BSCswapFactory contract has following events:

• event PairCreated(address indexed token0, address indexed
token1, address pair, uint);

Modifiers

BSCswapFactory has no modifiers.

Fields

BSCswapFactory contract has following fields and constants:

• address public override feeTo

• address public override feeToSetter
• address public override migrator
• mapping(address => mapping(address => address)) public

override getPair
• address[] public override allPairs

State-Changing Functions

BSCswapFactory contract has following state-changing functions:

• constructor

Description

Initializes the contract. Sets feeToSetter address.

Visibility

public

Input parameters

o address _feeToSetter

Constraints

None

Events emit

None

Output

None

• createPair

Description

Creates a pair for tokenA and tokenB if one doesn’t exist
already.

Visibility

external

Input parameters

o address tokenA
o address tokenB

Constraints

o tokenA and tokenB must not be equal.
o tokenA and/or tokenB must not be zero.
o The pair must not exist yet.

Events emit

Emits the PairCreated event.

Output

o address pair
• setFeeTo

Description

Used to set the feeTo address.

Visibility

external

Input parameters

o address _feeTo

Constraints

o The msg.sender address must be equal to the
feeToSetter address.

Events emit

None

Output

None

• setMigrator

Description

Used to set the migrator contract address.

Visibility

external

Input parameters

o address _migrator

Constraints

o The msg.sender address must be equal to the
feeToSetter address.

Events emit

None

Output

None

• setFeeToSetter

Description

Used to set the feeToSetter address.

Visibility

external

Input parameters

o address _feeToSetter

Constraints

o The msg.sender address must be equal to the
feeToSetter address.

Events emit

None

Output

None

Read-Only Functions

BSCswapFactory contract has following read-only functions:

• function allPairsLength() external override view returns
(uint);

• function pairCodeHash() external pure returns (bytes32);

BSCswapPair.sol

Description

BSCswapPair is a liquidity pair contract.

Imports

BSCswapPair contract has following imports:

• BSCswapBEP20.sol – from the project files.
• Math.sol – from the project files.
• UQ112x112.sol – from the project files.
• IBEP20.sol – from the project files.
• IBSCswapFactory.sol – from the project files.
• IBSCswapCallee.sol – from the project files.
• BSCswapPair defines IMigrator interface that has following

functions:
o function desiredLiquidity() external view returns

(uint256);

Inheritance

BSCswapPair is BSCswapBEP20.

Usages

BSCswapPair contract has following usages:

• SafeMathBSCswap for uint;
• UQ112x112 for uint224;

Structs

BSCswapPair contract has no data structures.

Enums

BSCswapPair contract has no enums.

Events

BSCswapPair contract has following events:

• event Mint(address indexed sender, uint amount0, uint
amount1);

• event Burn(address indexed sender, uint amount0, uint
amount1, address indexed to);

• event Swap(address indexed sender, uint amount0In, uint
amount1In, uint amount0Out, uint amount1Out, address
indexed to);

• event Sync(uint112 reserve0, uint112 reserve1);

Modifiers

BSCswapPair has following modifiers:

• modifier lock();

Fields

BSCswapPair contract has following fields and constants:

• uint public constant MINIMUM_LIQUIDITY = 10**3;
• bytes4 private constant SELECTOR =

bytes4(keccak256(bytes('transfer(address,uint256)')));
• address public factory;
• address public token0;
• address public token1;
• uint112 private reserve0;
• uint112 private reserve1;
• uint32 private blockTimestampLast;
• uint public price0CumulativeLast;
• uint public price1CumulativeLast;
• uint public kLast;
• uint private unlocked = 1;

State-Changing Functions

BSCswapPair contract has following state-changing functions:

• constructor

Description

Initializes the contract. Sets factory address.

Visibility

public

Input parameters

None

Constraints

None

Events emit

None

Output

None

• initialize

Description

Sets tokens addresses.

Visibility

external

Input parameters

None

Constraints

o The msg.sender must be the factory address.

Events emit

None

Output

None

• mint

Description

Creates pool tokens.

Visibility

external

Input parameters

o address to

Constraints

o lock modifier.
o Liquidity must be greater than 0.

Events emit

Emits the Mint event.

Output

o uint liquidity
• burn

Description

Destroys pool tokens.

Visibility

external

Input parameters

o address to

Constraints

o lock modifier.
o Sufficient liquidity must be burned.

Events emit

Emits the Burn event.

Output

o uint amount0
o uint amount1

• swap

Description

Swaps tokens.

Visibility

external

Input parameters

o uint amount0Out
o uint amount1Out
o address to
o bytes calldata data

Constraints

o lock modifier.
o Output amount must be sufficient.
o Address to must be valid.
o Input amount must be sufficient.

Events emit

Emits the Swap event.

Output

None

• skim

Description

Used to force balances to match reserves.

Visibility

external

Input parameters

o address to

Constraints

o lock modifier.

Events emit

None

Output

None

• sync

Description

Used to force reserves to match balances.

Visibility

external

Input parameters

None

Constraints

o lock modifier.

Events emit

None

Output

None

Read-Only and Non-Public Functions

BSCswapPair contract has following read-only and non-public
functions:

• function getReserves() public view returns (uint112
_reserve0, uint112 _reserve1, uint32 _blockTimestampLast);

• function _safeTransfer(address token, address to, uint
value) private;

• function _update(uint balance0, uint balance1, uint112
_reserve0, uint112 _reserve1) private;

• function _mintFee(uint112 _reserve0, uint112 _reserve1)
private returns (bool feeOn);

BSCswapBEP20.sol

Description

BSCswapBEP20 is BEP-20 pool token contract.

Imports

BSCswapBEP20 contract has following imports:

• SafeMath.sol – from the project files.

Inheritance

BSCswapBEP20 inherits nothing.

Usages

BSCswapBEP20 contract has following usages:

• SafeMathBSCswap for uint;

Structs

BSCswapBEP20 contract has no data structures.

Enums

BSCswapBEP20 contract has no enums.

Events

BSCswapBEP20 contract has following events:

• event Approval(address indexed owner, address indexed
spender, uint value);

• event Transfer(address indexed from, address indexed to,
uint value);

Modifiers

BSCswapBEP20 has no modifiers.

Fields

BSCswapBEP20 contract has following fields and constants:

• string public constant name = 'SwapLiquidity LP Token';
• string public constant symbol = 'SLP';
• uint8 public constant decimals = 18;
• uint public totalSupply;
• mapping(address => uint) public balanceOf;
• mapping(address => mapping(address => uint)) public

allowance;
• bytes32 public DOMAIN_SEPARATOR;
• bytes32 public constant PERMIT_TYPEHASH =

0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845
d6126c9;

• mapping(address => uint) public nonces;

State-Changing Functions

BSCswapBEP20 contract has following state-changing functions:

• constructor

Description

Initializes the contract.

Visibility

public

Input parameters

None

Constraints

None

Events emit

None

Output

None

• approve

Description

Lets msg.sender set their allowance for a spender.

Visibility

external

Input parameters

o address spender
o uint value

Constraints

None

Events emit

None

Output

o bool
• transfer

Description

Lets msg.sender send pool tokens to an address.

Visibility

external

Input parameters

o address to
o uint value

Constraints

None

Events emit

None

Output

o bool
• transferFrom

Description

Sends pool tokens from one address to another.

Visibility

external

Input parameters

o address from
o address to
o uint value

Constraints

None

Events emit

None

Output

o bool
• permit

Description

Sets the allowance for a spender where approval is granted
via a signature.

Visibility

external

Input parameters

o address owner
o address spender
o uint value
o uint deadline
o uint8 v

o bytes32 r
o bytes32 s

Constraints

o The deadline has not expired yet.
o The signature must be valid.

Events emit

None

Output

None

Read-Only and Non-Public Functions

BSCswapBEP20 contract has following read-only and non-public
functions:

• function _mint(address to, uint value) internal;
• function _burn(address from, uint value) internal;
• function _approve(address owner, address spender, uint

value) private;
• function _transfer(address from, address to, uint value)

private;

BSCswapRouter.sol

Description

BSCswapRouter is swap contract.

Imports

BSCswapRouter contract has following imports:

• BSCswapLibrary.sol – from the project files.
• SafeMath.sol – from the project files.
• TransferHelper.sol – from the project files.
• IBSCswapRouter02.sol – from the project files.
• IBSCswapFactory.sol – from the project files.
• IBEP20.sol – from the project files.
• IWBNB.sol – from the project files.

Inheritance

BSCswapRouter is IBSCswapRouter02.

Usages

BSCswapRouter contract has following usages:

• SafeMathBSCswap for uint;

Structs

BSCswapRouter contract has no data structures.

Enums

BSCswapRouter contract has no enums.

Events

BSCswapRouter contract has no custom events.

Modifiers

BSCswapRouter has following modifiers:

• modifier ensure(uint deadline)

Fields

BSCswapRouter contract has following fields and constants:

• address public immutable override factory;
• address public immutable override WBNB;

State-Changing Functions

BSCswapRouter contract has following state-changing functions:

• constructor

Description

Initializes the contract.

Visibility

public

Input parameters

o address _factory
o address _WBNB

Constraints

None

Events emit

None

Output

None

• receive

Description

Used to accept BNB.

Visibility

external payable

Input parameters

None

Constraints

o Only accept BNB via fallback from the WBNB contract.

Events emit

None

Output

None

• addLiquidity

Description

Adds liquidity to a pool.

Visibility

external

Input parameters

o address tokenA
o address tokenB
o uint amountADesired
o uint amountBDesired
o uint amountAMin
o uint amountBMin
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.

Events emit

None

Output

o uint amountA
o uint amountB
o uint liquidity

• addLiquidityBNB

Description

Adds liquidity to a pool with BNB.

Visibility

external payable

Input parameters

o address token
o uint amountTokenDesired
o uint amountTokenMin
o uint amountBNBMin
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o BNB transferred successfully.

Events emit

None

Output

o uint amountToken
o uint amountBNB
o uint liquidity

• removeLiquidity

Description

Removes liquidity from a pool.

Visibility

external

Input parameters

o address tokenA
o address tokenB
o uint liquidity
o uint amountAMin
o uint amountBMin
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The amount of tokenA must be sufficient.
o The amount of tokenB must be sufficient.

Events emit

None

Output

o uint amountA
o uint amountB

• removeLiquidityBNB

Description

Removes liquidity from an pool and receive BNB.

Visibility

external

Input parameters

o address token
o uint liquidity
o uint amountTokenMin
o uint amountBNBMin
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.

Events emit

None

Output

o uint amountToken
o uint amountBNB

• removeLiquidityWithPermit

Description

Removes liquidity from a pool without pre-approval.

Visibility

external

Input parameters

o address tokenA
o address tokenB
o uint liquidity
o uint amountAMin
o uint amountBMin
o address to

o uint deadline
o bool approveMax
o uint8 v
o bytes32 r
o bytes32 s

Constraints

None

Events emit

None

Output

o uint amountA
o uint amountB

• removeLiquidityBNBWithPermit

Description

Removes liquidity from a pool and receive BNB without pre-
approval.

Visibility

external

Input parameters

o address token
o uint liquidity
o uint amountTokenMin
o uint amountBNBMin
o address to
o uint deadline
o bool approveMax
o uint8 v
o bytes32 r
o bytes32 s

Constraints

None

Events emit

None

Output

o uint amountToken
o uint amountBNB

• removeLiquidityBNBSupportingFeeOnTransferTokens

Description

Identical to removeLiquidityBNB, but succeeds for tokens
that take a fee on transfer.

Visibility

external

Input parameters

o address token
o uint liquidity
o uint amountTokenMin
o uint amountBNBMin
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.

Events emit

None

Output

o uint amountBNB
• removeLiquidityBNBWithPermitSupportingFeeOnTransferTokens

Description

Identical to removeLiquidityBNBWithPermit, but succeeds for
tokens that take a fee on transfer.

Visibility

external

Input parameters

o address token
o uint liquidity
o uint amountTokenMin
o uint amountBNBMin
o address to
o uint deadline
o bool approveMax
o uint8 v
o bytes32 r
o bytes32 s

Constraints

None

Events emit

None

Output

o uint amountBNB
• swapExactTokensForTokens

Description

Swaps an exact amount of input tokens for as many output
tokens as possible.

Visibility

external

Input parameters

o uint amountIn
o uint amountOutMin
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o Output amount must be sufficient.

Events emit

None

Output

o uint[] memory amounts
• swapTokensForExactTokens

Description

Receive an exact amount of output tokens for as few input
tokens as possible.

Visibility

external

Input parameters

o uint amountOut
o uint amountInMax
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o Input amount must not be excessive.

Events emit

None

Output

o uint[] memory amounts
• swapExactBNBForTokens

Description

Swaps an exact amount of BNB for as many output tokens as
possible.

Visibility

external payable

Input parameters

o uint amountOutMin
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The path must be valid.
o Output amount must be sufficient.

Events emit

None

Output

o uint[] memory amounts
• swapTokensForExactBNB

Description

Receive an exact amount of BNB for as few input tokens as
possible.

Visibility

external

Input parameters

o uint amountOut
o uint amountInMax
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The path must be valid.
o Input amount must not be excessive.

Events emit

None

Output

o uint[] memory amounts
• swapExactTokensForBNB

Description

Swaps an exact amount of tokens for as much BNB as
possible.

Visibility

external

Input parameters

o uint amountIn
o uint amountOutMin
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The path must be valid.
o Output amount must be sufficient.

Events emit

None

Output

o uint[] memory amounts
• swapBNBForExactTokens

Description

Receive an exact amount of tokens for as little BNB as
possible.

Visibility

external payable

Input parameters

o uint amountOut
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The path must be valid.
o Input amount must not be excessive.

Events emit

None

Output

o uint[] memory amounts
• swapExactTokensForTokensSupportingFeeOnTransferTokens

Description

Identical to swapExactTokensForTokens, but succeeds for
tokens that take a fee on transfer.

Visibility

external

Input parameters

o uint amountIn
o uint amountOutMin
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o Output amount must be sufficient.

Events emit

None

Output

None

• swapExactBNBForTokensSupportingFeeOnTransferTokens

Description

Identical to swapExactBNBForTokens, but succeeds for tokens
that take a fee on transfer.

Visibility

external payable

Input parameters

o uint amountOutMin
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The path must be valid.
o Output amount must be sufficient.

Events emit

None

Output

None

• swapExactTokensForBNBSupportingFeeOnTransferTokens

Description

Identical to swapExactTokensForBNB, but succeeds for tokens
that take a fee on transfer.

Visibility

external

Input parameters

o uint amountIn
o uint amountOutMin
o address[] calldata path
o address to
o uint deadline

Constraints

o ensure(deadline) modifier.
o The path must be valid.
o Output amount must be sufficient.

Events emit

None

Output

None

Read-Only and Non-Public Functions

BSCswapRouter contract has following read-only and non-public
functions:

• function _addLiquidity(address tokenA, address tokenB, uint
amountADesired, uint amountBDesired, uint amountAMin, uint
amountBMin) internal virtual returns (uint amountA, uint
amountB)

• function _swap(uint[] memory amounts, address[] memory
path, address _to) internal virtual

• function _swapSupportingFeeOnTransferTokens(address[]
memory path, address _to) internal virtual

• function quote(uint amountA, uint reserveA, uint reserveB)
public pure virtual override returns (uint amountB)

• function getAmountOut(uint amountIn, uint reserveIn, uint
reserveOut) public pure virtual override returns (uint
amountOut)

• function getAmountIn(uint amountOut, uint reserveIn, uint
reserveOut) public pure virtual override returns (uint
amountIn)

• function getAmountsOut(uint amountIn, address[] memory
path) public view virtual override returns (uint[] memory
amounts)

• function getAmountsIn(uint amountOut, address[] memory
path) public view virtual override returns (uint[] memory
amounts)

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

No medium severity issues were found.

 Low

No low severity issues were found.

 Lowest / Code style / Best Practice

1. Some code style issues were found by the static code
analyzers.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 1 informational issue during the audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

